Harrell Site Edgecombe County, North Carolina

Stream and Wetland Restoration Plan

Contract No. D05025-1

North Carolina Ecosystem Enhancement Program

April 2007

Harrell Stream and Wetland Restoration Plan

Edgecombe County, North Carolina

SCO Contract No. D05025-1 KCI Project No. 12054239

Prepared for: NCDENR-EEP 1652 Mail Service Center Raleigh, NC 27699-1652

Prepared by: KCI Technologies, Inc. 4601 Six Forks Road, Suite 220 Raleigh, NC 27609

Joseph J. Pfeiffer, Project Manager jpfeiffer@kci.com 919-783-9214

April 2007

EXECUTIVE SUMMARY

The Harrell Stream and Wetland Restoration Site is located in the Coastal Plain in Edgecombe County, North Carolina. The project will mitigate stream and wetland impacts within the 8-digit hydrologic cataloging unit 03020101 in the Tar-Pamlico River Basin by restoring 6,987 linear feet on an Unnamed Tributary to Swift Creek (UTSC) and 15.0 acres of Coastal Plain Small Stream Swamp wetland community.

The project watershed drains toward the southeast with a contributing area of approximately 0.69 square mile (441 acres) at the downstream limits of the site. Approximately 387.2 acres drain to the UTSC while 56.9 acres drain to the project wetland site. The surrounding area is predominately rural and has low development pressure at this time. Overall, the project watershed is about 94.6% agriculture, 4.2% forest and 1.2% rangeland.

The stream has been channelized and straightened since at least 1948. Currently, the entire site is under agricultural production and the fields are cultivated right up to the top of the stream banks. The existing project stream is 6,338 linear feet. There are no remaining vegetated buffers or in-stream features in the channel and the banks are nearly vertical. The channel can be characterized as having poor streambed variability and habitat diversity.

Two reference reaches were used for this project to develop dimensionless ratios: a headwater reach of the Mitchell River in Surry County, North Carolina and North Prong Creek in Durham County, North Carolina. The Mitchell River reference site is classified as a "B4c" channel and morphological data from this reference stream were used for the design of Reach 1 of the UTSC. The North Prong Creek reference reach was classified as a narrow width/depth ratio C5 stream type and was used to design Reaches 2, 3, and 4 on the UTSC.

The proposed wetland restoration site is located northeast of the UTSC and consists of 15.0 acres of drained hydric soils currently used for agriculture. The area has been ditched and drained since at least 1948 and jurisdictional hydrology no longer exists on the site. The wetland site is adjacent to a forested wetland buffer along Swift Creek and restoration of the site has the potential to increase the amount of connected wetland habitat. A suitable reference wetland was not found for this wetland site. KCI will use the description of a Coastal Plain Small Stream Swamp by Schafale and Weakley as a surrogate vegetative community as needed.

The primary goals for this project are:

- Protect aquatic resources from excess nutrients, sediment, and other pollutants coming from the agricultural watershed.
- Reestablish a functional Coastal Plain Small Swamp Stream wetland complex that creates terrestrial and aquatic habitat and connects to the existing floodplain corridor along Swift Creek.

The objectives that must be accomplished to reach these goals are:

- Restore 6,987 linear feet of stable stream channel with the appropriate pattern, profile, and dimension that can support a sand transport system.
- Connect the stream to a functioning floodplain.
- Fill and plug ditches in the drained hydric soils to restore saturated hydrologic conditions for 5% of the growing season.
- Plant tree species typical of a Coastal Plain Small Swamp Stream along the UTSC riparian corridor and floodplain as well as in the restored wetland.

Stream Restoration						
Reach	Station Range	Mitigation Type	Priority Approach	Stream Classification	Existing Linear Footage	Designed Linear Footage
Reach 1	10+00 - 22+65	Restoration	P3	B5c	1,224	1,265
Reach 2	22+65 - 37+30	Restoration	P2	C5	1,389	1,465
Reach 3	37+30 - 52+90	Restoration	P2	C5	1,231	1,560
Reach 4	52+90 - 79+87	Restoration	P2	C5	2,494	2,697
Wetland Restoration						
Acreage	Soil Type	Mitigation Type	Designed Community Type			
15.0	Roanoke	Restoration	Coastal Plain Small Stream Swamp			

Reach 1 will be restored using a Priority 3 approach. At this site, the width/depth ratio will be increased and the bank slopes cut back within the existing channel. A B5c channel will be created with a sinuosity of 1.03 for 1.265 linear feet of stream.

Reaches 2, 3, and 4 cover the remainder of the stream and will be restored using a Priority 2 approach. The restoration will establish a bankfull channel with a new floodplain and the design bankfull stage will equal the new floodplain elevation (bank height ratio = 1.0). A C5 channel morphology with a sinuosity ranging from 1.05-1.27 will restore 5,114 linear feet of existing stream to 5,722 linear feet of restored channel.

In order to further protect the UTSC from agricultural run-off, water quality treatment areas will be installed at the base of the ditches that drain to UTSC. These areas will store and treat a portion of the run-off before it reaches UTSC.

The sediment regime in the UTSC is dominated by sand and dune/anti-dune processes need to be allowed to function in order to maintain stability in the channel. If there are impediments to these shifting sand processes, the sand can become more turbulent and form powerful waves throughout the channel. For this reason, a limited number of stream structures will be installed in the restored reaches. Only two riffle grade control structures and three log drop structures will be used throughout the stream.

In order to restore the wetland, the existing ditch network will be plugged and filled to block water from leaving the site. Ditch plugs will be placed in the four ditch outlets. In addition to blocking the major outlets from the site, KCI will also recreate wetland microtopography to form small depressions and rises throughout the site that resemble the minor variations found in a natural wetland system.

To complete the project, both the stream and wetland sites will be planted with species consistent with a Coastal Plain Small Stream Swamp community. Trees will be planted at a density of 436 trees per acre (10 feet by 10 feet spacing) to achieve a mature survivability of 320 trees per acre.

Both the stream and wetland restoration sites will be monitored to evaluate project success. For the stream, monitoring shall consist of the collection and analysis of stream stability and riparian/stream bank vegetation survivability data to support the evaluation of the project in meeting established restoration objectives. The wetland site will be deemed successful once hydrology is established and vegetation success criteria are met.

TABLE OF CONTENTS

1.0		INTRODUCTION	1
2.0		PROJECT SITE IDENTIFICATION AND LOCATION	
	2.1	Directions to Project Site	1
	2.2	USGS Hydrologic Unit Code and NCDWQ River Basin Designations	1
3.0		WATERSHED CHARACTERIZATION	
	3.1	Drainage Area	1
	3.2	Surface Water Classification/Water Quality	2
	3.3	Geology and Soils	
	3.4	Historical Land Use and Development Trends	.3
		3.4.1 Historical Resources.	3
		3.4.2 Land Use and Development Potential	3
	3.5	Endangered/Threatened Species	3
	3.6	Cultural Resources	3
	3.7	Potential Constraints	.4
		3.7.1 Property Ownership and Boundary	4
		3.7.2 Site Access	4
		3.7.3 Utilities	4
		3.7.4 FEMA/Hydrologic Trespass	
4.0		PROJECT SITE STREAMS (EXISTING CONDITIONS)	4
	4.1	General Site Description	
	4.2	Channel Morphology (Pattern, Dimension, and Profile)	5
	4.3	Channel Stability Assessment	
	4.4	Bankfull Verification	5
	4.5	Stream Vegetation	
5.0		REFERENCE STREAMS	
	5.1	Mitchell River Reference Site	
	5.2	Mitchell River Watershed Characterization	
	5.3	North Prong Reference Site	
	5.4	North Prong Watershed Characterization	
6.0		PROJECT SITE WETLANDS (EXISTING CONDITIONS)	
	6.1	Jurisdictional Wetlands	
	6.2	Hydrologic Characterization	
		6.2.1 Groundwater Modeling	
		6.2.2 Surface Water Modeling	
		6.2.3 Hydrologic Budget for Restoration Site	
	6.3	Soil Characterization	
		6.3.1 Taxonomic Classification	
		6.3.2 Profile Description	
		6.3.3 Soil Properties	
	6.4	Wetland Plant Community Characterization	
7.0		REFERENCE WETLAND	
8.0	0.1	PROJECT SITE RESTORATION PLAN	
	8.1	Restoration Project Goals and Objectives	
		8.1.1 Designed Channel Classification	
	0.0	8.1.2 Target Plant Communities	
	8.2	Sediment Transport Analysis	
	8.3	Wetland Hydrologic Modifications	
		8.3.1 Narrative of Modifications1	13

8.4	Natural Plant Community Restoration	13
	8.4.1 Stream Riparian Planting	13
	8.4.2 Wetland Planting	14
	8.4.3 On-Site Invasive Species Management	15
9.0	PERFORMANCE CRITERIA	15
9.1	Stream Stability	15
9.2	Stream Riparian Vegetation	16
9.3	Wetland Hydrology	
9.4	Wetland Vegetation	
9.5	Schedule/Reporting	
10.0	REFERENCES	

Tables

Table 1.	Project Restoration Structure and Objectives	23
	Drainage Areas	
Table 3.	Land Use of Watershed	
Table 4.	Morphological Design Criteria	24

Figures

Figure 1.	Vicinity Map	27
Figure 2.	North Carolina Ecoregions	
Figure 3.	Project Site Watershed	29
Figure 4.	Project Site NRCS Soil Survey	30
Figure 5.	Project Watershed Land Use	31
Figure 6.	Project Site Floodplain Map	32
Figure 7.	Existing Hydrologic Conditions	
Figure 8.	Reference Reach Vicinity Map (Mitchell River)	34
Figure 9.	Reference Reach Watershed (Mitchell River)	35
Figure 10.	Reference Reach Vicinity Map (North Prong Creek)	36
Figure 11.	Reference Reach Watershed (North Prong Creek)	37

Stream Plan Sheets

Plan Sheet 1	Title Sheet
Plan Sheet 1A	General Notes and Project Legend
Plan Sheet 2A	Details: Stabilization
Plan Sheet 2	Details: Cross-Section
Plan Sheets 3-8	Plan and Profile
Plan Sheets 15-20	Planting Plan

Wetland Plan Sheets

Plan Sheet 1	Title Sheet
Plan Sheet 2	Site Plan
Plan Sheet 3	Mitigation Plan
Plan Sheet 4	Planting Plan
Plan Sheet 6	Details

Appendices

Appendix A	Historical Aerial Photographs
Appendix B	Correspondence
Appendix C	Conservation Easement
Appendix D	Project Site Photographs
Appendix E	Existing Conditions Data
Appendix F	Reference Reach Data
Appendix G	Jurisdictional Wetlands
Appendix H	Wetland Budget

1.0 INTRODUCTION

The Harrell Stream and Wetland Restoration Site is a full-delivery project developed for the North Carolina Ecosystem Enhancement Program (EEP) to mitigate stream and non-riparian wetland impacts within the 8-digit hydrologic cataloging unit 03020101. The project will restore 6,987 linear feet on an Unnamed Tributary to Swift Creek (UTSC) and 15.0 acres of Coastal Plain Small Stream Swamp wetland community. This restoration plan presents the existing site and watershed conditions, the restoration design criteria, the design summary, and the proposed monitoring protocol.

2.0 **PROJECT SITE IDENTIFICATION AND LOCATION**

2.1 Directions to Project Site

The HPRS is part of a 319-acre parcel owned by Mr. Floyd and Mrs. Ernestine Harrell. The site is located approximately six miles northeast of Rocky Mount, North Carolina in Edgecombe County (Figure 1). The latitude and longitude of the project site are 36.0201 North and 77.6807 West (WGS1984).

To reach the site from Raleigh:

Proceed east on U.S. Route 264-East/64-East (US 264E/64E) for approximately 17 miles. Continue on US 64E for another 30 miles. Take the U.S. Route 301 Bypass and then U.S. Route 301 (US 301) north into Battleboro. Turn right on E. Battleboro Avenue, which becomes Battleboro-Leggett Road. Continue past the first turn onto Morning Star Church Road on the left just outside of town. Go about 5 miles and turn left onto the second Morning Star Church Rd (the road loops around). Go one mile and turn right onto a dirt road opposite Benson Farm Rd. The stream restoration site will begin as the stream exits the culvert under Morning Star Church Rd.

2.2 USGS Hydrologic Unit Code and NCDWQ River Basin Designations

The Unnamed Tributary to Swift Creek (UTSC) is a second-order perennial stream that flows west to east for approximately 6,338 linear feet once on the Harrell property. The stream drains into Swift Creek approximately 500 linear feet after leaving the project site.

The project site is situated within the 03020101 (Tar-Pamlico 01) Watershed Cataloging Unit (8-digit HUC) and the 03020101130090 Local Watershed Unit (14-digit HUC). It is within the North Carolina Division of Water Quality (NCDWQ) Subbasin 03-03-02. In the North Carolina Ecosystem Enhancement Program's (EEP) Tar-Pamlico River Basin Watershed Restoration Plan, the Swift Creek watershed has not been identified as a high priority, Targeted Hydrologic Unit.

3.0 WATERSHED CHARACTERIZATION

The project watershed is a small agricultural drainage in the inner Coastal Plain as seen in Figure 2. The surrounding topography is characterized by flat bottomlands and gently rolling hills. The elevation in the project watershed ranges from 65 to 119 feet above mean sea level.

3.1 Drainage Area

The project watershed drains toward the southeast with a contributing area of approximately 0.69 square mile (441 acres) at the downstream limits of the site. The project stream has a total drainage area of 387.2 acres while 56.9 acres drain to the project wetland. The UTSC enters Swift Creek at a point approximately 7.8 miles upstream of the confluence with the Tar River as seen in Figure 3. The project area is located in the United States Geological Survey (USGS) Whitakers Quadrangle.

3.2 Surface Water Classification/Water Quality

The NCDWQ assigns surface water classifications in order to help protect, maintain, and preserve water quality. For the water resources classification, Swift Creek, as the receiving waters, was used to characterize the UTSC. The section of Swift Creek just downstream of the project area (28-78-(2.5)) is listed as a Class C and Nutrient Sensitive Water (NSW). The NCDWQ reduced the bioclassification of Swift Creek in 2002 from excellent to good, listing constricted flow as the reason for the downgrade. This reduced flow has led to lower dissolved oxygen levels in the stream.

- **Class C waters** are protected for secondary recreation, fishing, wildlife, fish and aquatic life propagation and survival, agriculture, and other uses suitable for Class C. Secondary recreation includes wading, boating, and other uses involving human body contact with water where such activities take place in an infrequent, unorganized, or incidental manner. There are no restrictions on watershed development or types of discharges
- Nutrient Sensitive Water (NSW) is a supplemental classification intended for waters needing additional nutrient management due to their being subject to excessive growth of microscopic or macroscopic vegetation. In general, management strategies for point and nonpoint source pollution control require control of nutrients (nitrogen and/or phosphorus usually) such that excessive growths of vegetation are reduced or prevented and there is no increase in nutrients over target levels. Management strategies are site-specific (NCDENR, DWQ 2006).

3.3 Geology and Soils

The site lies within the Southeastern Floodplains and Low Terraces ecoregion of the Coastal Plain physiographic province. The area is referred to as the inner Coastal Plain and is characterized by more relief than the outer Coastal Plain. The underlying sediments of the site are from the Yorktown Formation and Duplin Formation Undivided. The Yorktown Formation is described as fossilferous clay with varying amounts of fine-grained sand, bluish gray, shell material commonly concentrated in lenses and is found mainly in areas north of Neuse River. The Duplin Formation is described as shelly, medium to coarse-grained sand, sandy marl, and limestone, bluish gray, mainly in area south of Neuse River (NCGS 1985).

The project watershed primarily intersects the soils in the Roanoke-Conetoe-Portsmouth association, which is described as nearly level and gently sloping, very poorly drained, poorly drained, and welldrained soils that have a clayey to sandy subsoil. These associated soils are typically found on broad flats, smooth to slightly rounded ridges, or depressions. The predominant soil series in the project watershed are Altavista fine sandy loam, Cape Fear loam, Dogue fine sandy loam, Norfolk loamy sand, Rains fine sandy loam, and Roanoke loam (Figure 4). Altavista fine sandy loam consists of a brown fine sandy loam surface layer and a sandy clay loam to sandy loam subsurface. The Cape Fear loam has a black loam surface layer and clay loam to sandy clay loam subsurface. Dogue fine sandy loam has a brown fine sandy loam surface and clay to sandy clay loam subsoil. The Norfolk loamy sand series has a brown fine sandy loam surface and sandy clay loam subsoil. The Portsmouth fine loamy sand has very dark gray fine sandy loam surface layer and sandy loam to sandy clay loam subsoil. The Rains fine sandy loam has a surface layer of very dark gray fine sandy loam and gray sandy clay loam subsoil. The Roanoke loam has a surface of dark grayish brown loam and gray clay to sandy clay loam subsoil (USDA, SCS 1979).

3.4 Historical Land Use and Development Trends

3.4.1 Historical Resources

Historical aerial photographs were obtained from the Edgecombe County Natural Resources Conservation Service (NRCS) office in order to more effectively assess the existing site conditions. All available aerial photographs were reviewed in order to create a chronology of land disturbance. Aerial photographs of the site were obtained from 1948, 1954, 1964, 1971, 1979, 1998, 2002, and 2005 (Appendix A).

In 1948, the northern portion of the stream site contains agricultural land while the southern portion along the stream is forested. The stream had already been straightened at this point. The wetland area had also been converted to agriculture by this time, which included a series of drainage ditches in place across the site. In 1954, the subject property shows little change from the 1948 conditions.

In 1964, the subject property closely resembles the 1954 conditions, but the southwest and southeast portions of the wetland area are forested. In 1971 and 1979, the subject property closely resembles the 1964 conditions.

The entire property has been cleared by 1998 and is under agricultural production. The drainage features are largely unchanged from the conditions in 1948. In 2002 and 2005, the subject property closely resembles the 1998 conditions; no significant differences are discernable.

The stream channel shows the same observable pattern from 1948 up until its current condition. No changes in either the stream valley or stream channel within the project area were observed in the historical aerial photographs. Therefore, any alterations to the stream channel occurred prior to 1948. No significant changes have occurred in the project area since 1948.

3.4.2 Land Use and Development Potential

The project watershed is 441 acres in size as seen in Figure 3. The surrounding area is predominately rural and has low development pressure at this time. Overall, the project watershed is approximately 94.6% agriculture, 4.2% forest and 1.2% rangeland based on the North Carolina GAP land use classification using 1992 and 1993 aerial photography (McKerrow 2003).

3.5 Endangered/Threatened Species

KCI requested a formal review by the North Carolina Natural Heritage Program (NCNHP) in July 2005 to evaluate the presence of any rare species, critical habitat, and priority natural areas on the project site and to determine the potential impact of the proposed project on these resources. In their findings letter dated July 11, 2005 (Appendix B), the NCNHP indicated "no record of rare species, significant natural communities, or priority natural areas at the site or within a mile of the project area". In addition, no threatened or endangered species were identified in the project area during the existing conditions site assessment. Also, a formal review by the United States Fish and Wildlife Service (USFWS) was requested in July 2005, but no correspondence was returned.

3.6 Cultural Resources

To evaluate the presence of significant cultural resources on the subject property, KCI requested a formal review at the North Carolina Department of Cultural Resources, State Historic Preservation Office (SHPO). The formal SHPO review dated July 18, 2005 found no historic properties within the project

area (see Appendix B). The formal review by the State Archaeology Office identified no potential archaeology sites on or around the subject property.

3.7 Potential Constraints

KCI investigated any potential site conditions that could hinder restoration activities. They were documented during the field investigation and are summarized below.

3.7.1 Property Ownership and Boundary

The project site is located on a single private property owned by Mr. Floyd and Mrs. Ernestine Harrell of 6444 NC Highway 42, Tarboro, North Carolina, 27886. KCI facilitated the acquisition of a conservation easement to be held by the State of North Carolina on the area identified for stream and wetland restoration. The conservation easement boundary (plat with legal description) has been included in Appendix C.

3.7.2 Site Access

There will be one access point to the project site off of Morning Star Church Road at the northwestern corner of the project site. This is a legal access point guaranteed with an ingress/egress easement. During the restoration of the stream and wetland components, construction equipment will be able to maneuver up and down the site as necessary.

3.7.3 Utilities

There are no utilities located on the project site.

3.7.4 FEMA/Hydrologic Trespass

The UTSC and the wetland restoration site are both located within the 100-year floodplain (Zone AE) of Swift Creek and a downstream portion of UTSC is within the floodway of Swift Creek (Figure 6). As such, any modifications that would result in the increase of the 100-year flood elevation would require a Conditional Letter of Map Revision (CLOMR). It is the intent of the restoration design to maintain the existing 100-year flood elevations. A proposed hydrology and hydraulics (H&H) summary will be submitted with a letter indicating that an increase in the 100-year flood elevation is not anticipated (No-Rise Certification).

A conditional floodplain model is being developed by using detailed topographic survey from the construction drawings completed for the restoration project. This conditional model will be revised to reflect changes to the channel and floodplain as the result of restoration (proposed model).

The proposed project reach is entirely contained within the Harrell property. The restoration of the project reach is not anticipated to produce hydrologic trespass conditions on any adjacent properties.

4.0 **PROJECT SITE STREAMS (EXISTING CONDITIONS)**

A field assessment was conducted in April 2006 to document existing conditions and to aid the development of an appropriate design for the stream restoration. The existing stream channel, ditches, ponds, wetland, and drained hydric soils at the project site are illustrated in Figure 7 and documented in the site photographs (Appendix D). Observations and collected data are summarized below and presented in Appendix E. The site was revisited several times from April 2006 to January 2007 to take further

measurements. Portions of the ditch network are displayed on the USGS quadrangle as a blue line stream, but a consultation with the North Carolina Division of Water Quality indicated that only the main channel of the UTSC was a jurisdictional waterway (see Appendix B).

4.1 General Site Description

The UTSC flows from west to east and drains approximately 387 acres of agricultural land into Swift Creek. The stream begins from a ridge at the top of the small watershed and flows for approximately 1,700 feet through farmland until the project reach begins. The project begins at Station 10+00 as the stream exits a culvert that goes under Morning Star Church Road. It then travels through agricultural fields on the Harrell property. Once the UTSC leaves the project boundary, it travels approximately 500 linear feet through a forested bottomland before reaching Swift Creek.

The existing project stream is 6,338 linear feet and has been ditched extensively since at least 1948 as seen in historic aerial photographs. There are no remaining vegetated buffers or in-stream features in the channel. The banks are nearly vertical and are cut up to the top of the bank for agricultural production. Several culverts convey water under agricultural crossings. At this time, sediment, nutrients and agricultural chemicals have direct access to the watercourse and can be deposited directly into Swift Creek. Fine sediments from the eroding stream banks and inputs from adjacent agricultural fields are also affecting water quality. The channel can be characterized as having poor streambed variability and habitat diversity.

4.2 Channel Morphology (Pattern, Dimension, and Profile)

A Rosgen Level III assessment was conducted to collect existing stream dimension, pattern, and profile data and determine the degree of channel instability. Channel cross-sections and profiles were surveyed at ten representative locations along the UTSC. Bed materials were sampled with pebble counts at seven of these ten locations. Data developed from these surveys are presented in Appendix E and a summary of existing channel morphology is shown in Table 4.

4.3 Channel Stability Assessment

A qualitative stability assessment was performed to estimate the level of departure from a stable stream system and to determine the likely causes of channel disturbance.

The UTSC is deeply incised as it enters the Harrell Property from the culvert under Morning Star Church Road. Cross-section #1, which is approximately 830 feet downstream of the beginning of the project, had a bank height ratio of 1.8 at the time of assessment. Further downstream, cross-sections #2 through #7 had bank height ratios ranging from 1.4-1.8. The stream has eroded down to a clay bottom and does not have regular access to the floodplain. Starting at Cross-section #8, the channel is not as incised and has bank height ratios from 1.0 to 1.2. The existing channel slope also decreases in this reach as the stream nears the end of the project. At the end of the project, the UTSC is affected by backwater from Swift Creek and has received large sediment deposits during storm events.

4.4 Bankfull Verification

The standard methodology used in natural channel design is based on the ability to select the appropriate bankfull discharge and generate the corresponding bankfull hydraulic geometry from a stable reference system(s). The determination of bankfull stage is the most critical component of the natural channel design process.

Bankfull can be defined as "the stage at which channel maintenance is most effective, that is, the discharge at which moving sediment, forming or removing bars, forming or changing bends and meanders, and generally doing work that results in the average morphologic characteristics of the channels" (Dunne and Leopold 1978). Several characteristics that commonly indicate the bankfull stage include: incipient point of flooding, breaks in slope, changes in vegetation, highest depositional features (i.e. point bars), and highest scour line. The identification of bankfull stage, especially in a degraded system, can be difficult. Therefore, verification measures were undertaken to facilitate the correct identification of the bankfull stage on the UTSC.

To verify bankfull stage at UTSC, regional hydraulic geometry relationships (regional curves) were used. Regional curves are typically utilized in ungauged areas to approximate bankfull discharge, area, width, and depth as a function of drainage area based on interrelated variables from other similar streams in the same physiographic province. Regional curves and corresponding equations from Harman et *al.* were used to approximate bankfull in the project reach (1999). Based on the regional curves, a bankfull discharge and cross-sectional area of 62 ft³/s and 15 ft² would be anticipated at the bottom of the project reach.

4.5 Stream Vegetation

Currently, there is no riparian vegetation at the project site. Agricultural fields are farmed right up to the top of bank along the entire length of the stream.

5.0 **REFERENCE STREAMS**

A reference reach is a channel with a stable dimension, pattern, and profile within a particular valley morphology. Reference reaches are used to develop dimensionless morphological ratios (based on bankfull stage) that can be extrapolated to disturbed/unstable streams to restore a stream of the same type and disposition as the reference stream (Rosgen 1998). Two reference reaches were used for this project: a headwater reach of the Mitchell River in Surry County, North Carolina and North Prong Creek in Durham County, North Carolina.

5.1 Mitchell River Reference Site

A headwater reach of the Mitchell River was surveyed by the North Carolina State University Water Quality Group in February 2003. The reference site is located in the northwestern portion of Surry County as seen in Figure 8. The reach was classified as a B4c channel at this location and morphological data from this reference stream were used for the design of the upper portion of the UTSC.

The water surface slope and dimensions at this reference reach made it suitable for developing dimensionless ratios for the upper portion of UTSC. Morphological data are presented in Table 4, but no representative cross-sections, profile, or pebble counts were available.

5.2 Mitchell River Watershed Characterization

The watershed for the Mitchell River headwater reach is located in Alleghany and Surry counties in northwestern North Carolina (Figure 9). It is part of the 14-digit hydrologic unit code 03040101080010 in the Yadkin River Basin and the NCDWQ subbasin 03-07-02. The 6.0-square mile watershed is approximately 92% forest and 5% rangeland (McKerrow 2003). The UTMR is located in the Southern Crystalline Ridges and Mountains ecoregion in the Blue Ridge physiographic province. Elevations in the watershed range from 1,470 to 3,148 feet above mean sea level.

5.3 North Prong Reference Site

A stable section of North Prong Creek, a second order stream located in Durham County, was selected as the reference reach for the downstream portion of the restoration project (Figure 10). Approximately 400 linear feet (20 bankfull widths) of North Prong Creek were surveyed by KCI in October 2002. This reach has a sediment regime similar to the UTSC. Likewise, the valley slope (0.23% compared to 0.24% at the project site) and sediment distribution (d_{50} of 0.2 mm compared to 0.4 mm) of the reference site are very similar to that of the project site. North Prong Creek is located in the Piedmont instead of the Coastal Plain physiographic region, but no other appropriate C5 reference was found in the Coastal Plain.

The North Prong Creek reference reach was classified as a narrow width/depth ratio C5 stream type. Collected morphological data as well as representative photographs of the reference site are provided in Appendix F. The measured morphological variables and dimensionless hydraulic geometry relationships developed to facilitate the restoration design are provided in Table 4.

5.4 North Prong Watershed Characterization

North Prong Creek is located in southern portion of Durham County, North Carolina and is in the 14-digit hydrologic unit 03030002060140 within the Cape Fear Basin. The stream was surveyed just upstream of the point where it drains into Northeast Creek. The watershed for North Prong Creek contains approximately 3.15 square miles (Figure 11). It is found in the NCDWQ 03-06-05 subbasin. The reference reach is located in the Triassic Basins ecoregion in the Piedmont physiographic province.

The portion of the stream used as a reference is found approximately 1,500 feet northwest of the intersection of Interstate 40 and State Highway 55. The elevation in the reference reach watershed ranges from approximately 258 to 408 feet above mean sea level.

6.0 **PROJECT SITE WETLANDS (EXISTING CONDITIONS)**

The proposed wetland restoration site is located northeast of the UTSC and consists of 15.0 acres of drained hydric soils currently used for agriculture (Figure 7). A series of drainage ditches runs through the proposed wetland site and it drains everything to the east, which inhibits the formation of saturated conditions on the site. The area has been ditched and drained since at least 1948 and jurisdictional hydrology no longer exists on the site. The wetland site is adjacent to a forested wetland buffer along Swift Creek and has the potential to increase the amount of Coastal Plain connected wetland habitat.

6.1 Jurisdictional Wetlands

A wetland delineation was performed at the site in June 2006 using the methods set out by the US Army Corps of Engineers (USACE 1987). There were no existing wetlands except for those that had formed in the bottoms of the drainage ditches (Appendix G). The US Army Corps of Engineers (USACE) issued a permit allowing these wetlands to be filled, because the site will be returned to a functioning wetland.

6.2 Hydrologic Characterization

There is a system of drainage ditches throughout the wetland project site as seen in Figure 7. These waterways drain both surface and groundwater from the site and have allowed agriculture to take place despite the poorly drained soils and flat site topography.

6.2.1 Groundwater Modeling

The numerous modifications to the hydrology of this area have effectively drained the wetland. The development of a network of ditches up to three feet deep has halted the influence of flooding on the area. The effect of ditching on wetland hydrology was evaluated in DRAINMOD using: the NRCS model Map Unit Users File (MUUF) for Roanoke soil; the daily rainfall and daily maximum and minimum temperatures for Rocky Mount and Tarboro for the period from 1950 to 2004 (National Climatic Data Center); and the Edgecombe County growing season (21 March to 11 November). This analysis concluded that the existing ditch network has removed jurisdictional hydrology from the evaluated areas.

6.2.2 Surface Water Modeling

KCI performed an analysis of surface water inputs in order to differentiate between riparian and nonriparian wetlands. The floodplain boundaries from DFIRM maps developed by the North Carolina Floodplain Mapping Program were used to interpolate the extent of the Swift Creek 5-year floodplain. This analysis showed that the 5-year floodplain from Swift Creek extends to 74 feet above mean sea level in this location. This elevation defined the boundary of the nonriparian wetland restoration site for this project.

6.2.3 Hydrologic Budget for Restoration Site

Existing Conditions

Existing site hydrology was modeled by developing an annual water budget that calculates hydrologic inputs and outputs in order to estimate the change in storage on a monthly time step (Appendix H).

In order to set up the water budget, historic climatic data were obtained from the North Carolina State Climatic Office. The weather station Tarboro 1 S (318500) in Tarboro, North Carolina was used, because it is the nearest station with daily precipitation and temperature records. The station is located approximately 12 miles to the southeast of the Harrell Site. Monthly precipitation totals from the entire period of record (1948-2005) were reviewed and three years were selected to represent a range of precipitation conditions: dry year (1988), average year (1977), and wet year (1989).

Potential inputs to the water budget include precipitation, groundwater, and surface inputs. For precipitation, the data from the three selected years were used in the budget. Groundwater input likely exists, but was considered negligible in comparison to the magnitude of surface and precipitation inputs. Surface water input was calculated using the USDA Soil Conservation Service (SCS) runoff curve number equation (USDA, SCS 1986).

Outputs from the site include potential evapotranspiration (PET), groundwater, and surface water outlets. PET was calculated by the Thornthwaite method using mean monthly temperatures determined from the chosen years of record: 1988, 1977, and 1989. Groundwater represents losses from the site due to downward seepage through the soil profile and was assumed to be $2x10^{-6}$ ft/min (1.04 inches per month), which is typical of low permeability soils associated with wetlands. A substantial amount of water is also lost through the existing ditches on-site. A DRAINMOD model was set up to simulate the effect of the existing drainage network on wetland hydrology. The program evaluated 40 years of available precipitation data and produced the annual loss due to the ditches for the three selected years.

Once the inputs and outputs were determined, a net monthly total was calculated in inches and used to estimate a yearly water budget. The model assumes unsaturated conditions at the beginning of the year. A maximum wetland water volume of 4.68 inches was calculated based on the specific yield of 0.13 for 36 inches of Roanoke soil in order to analyze conditions in the upper three feet of the soil profile. The

resulting hydrographs for the average, dry, and wet years show a seasonal pattern. The model shows that the majority of hydrologic inputs to the site come during the rainy spring months. The site begins to lose saturation in the upper twelve inches in the summer months. The late fall sees an increase in hydrologic inputs again. The dry year shows very little wetland hydrology overall.

Proposed Conditions

A modified water budget was developed to analyze the effect of restoration actions on the site hydrology. The loss of water from the existing ditches was removed from the calculations, because these ditches will be filled and no longer carry water off the site. To estimate the impact from recreating wetland microtopography, an additional two inches of hydrologic capacity was added to the calculations. Based on these changes, the budget shows a noticeable increase in the spring. In particular, the wet year has wetland hydrology throughout almost the entire year. The dry year does not show much change from the existing to proposed budget, which indicates that during a drought year the wetland may not experience consecutive saturated conditions expect during the first months of the growing season. The normal year is predicted to have saturation during the earlier part of the growing season with occasional dry periods during the late summer months.

6.3 Soil Characterization

A soils investigation at the proposed wetland restoration site was conducted by a certified soil scientist from KCI to determine the extent and distribution of the hydric soils and to classify the predominate soils to the soil series level. The investigation consisted of delineating the hydric soil boundaries with pink flagging in accordance with the US Army Corps of Engineers (1987). Areas that were identified as possible hydric soil mapping units were surveyed at a higher intensity until the edge of the mapping unit was identified. The boundary of the hydric and non-hydric soil mapping units were then followed by continual sampling and observations as the boundary line was identified and delineated. In those areas where the boundary was found to be a broad gradient rather than a distinct break, microtopography, landscape position, soil textural changes, redoximorphic features, and depleted matrices were additionally considered to identify the extent of the hydric soils.

To develop a detailed soils map, several soil borings were advanced on the site in the general hydric soil areas identified by landscape position, vegetation and slope. Once the hydric soil borings were identified, the soil scientist marked the point and established a visual line to the next auger boring where again hydric soil conditions were confirmed by additional borings. The soil scientist moved along the edges of the mapping unit and marked each point along the line. To confirm the hydric soil mapping unit, soil borings were advanced to a depth of 50 inches. The soil profile descriptions identified the individual horizons in the topsoil and upper subsoil as well as the depth, color, texture, structure, boundary, and evidence of restrictive horizons and redoximorphic features. The extent of the mapped hydric soils is shown in Figure 7.

6.3.1 Taxonomic Classification

The soil type at the wetland restoration site is Roanoke loam series, which is classified as a fine, mixed, semiactive thermic Typic Endoaquult.

6.3.2 Profile Description

The Roanoke loam series is described as a poorly drained silt loam that forms in fluvial sediments on stream terraces. The series consists of very deep, slowly permeable or very slowly permeable soils that have a moderate shrink-swell potential. Slopes are typically 0 to 2 percent. Mapped areas of the Roanoke series in Edgecombe County range from 4 acres to more than 100 acres. Typically, the surface layer is

dark grayish brown loam and 8 inches thick. Organic matter content is medium and there is also a high available water capacity in the surface layer. The seasonal high water table is at or near the surface. The subsoil is typically 44 inches thick with gray clay loam in the upper portion, gray clay in the middle part, and gray sandy clay loam in the lower area. The underlying material up to 90 inches is gray coarse sand (USDA, SCS 1979). The series is listed by the Natural Resource Conservation Service (NRCS) as a hydric soil.

6.3.3 Soil Properties

The Roanoke series has a saturated hydraulic conductivity from 0.06 to 2.0 inches/hour. The percent organic matter is approximately 0 to 2.0% and the bulk density is in the range of 1.20 to 1.65 g/cc (USDA, SCS 1979).

6.4 Wetland Plant Community Characterization

The wetland restoration site is currently under seasonal agricultural production. There is no wetland vegetation in the farmed area. The bottoms of the ditches do contain hydrophytic species such as cattail (*Typha latifolia*), water primrose (*Ludwigia spp.*) and knotweed (*Polygonum spp.*), but there are no woody species within the restoration site.

7.0 **REFERENCE WETLAND**

A suitable reference wetland was not found for this project. KCI contacted several landowners with potential reference wetland sites, but none were willing to allow their land to be used for an initial survey and groundwater monitoring. KCI will use the description by Schafale and Weakley as a surrogate vegetative community as needed (1990).

8.0 **PROJECT SITE RESTORATION PLAN**

Approximately 6,987 linear feet of stream and 15.0 acres of Coastal Plain Small Stream Swamp wetland will be restored at the Harrell Site. The restored stream and wetland will provide a buffer between the existing functioning wetlands along Swift Creek and the agricultural activities in the local watershed.

8.1 **Restoration Project Goals and Objectives**

The ecological diversity and water quality at the Harrell Site are significantly limited under the existing conditions. This project aims to restore terrestrial and aquatic habitat and to improve water quality by reestablishing stable fluvial geomorphic features, wetland hydrology, and native Coastal Plain vegetation.

The primary goals for this project are:

- Protect aquatic resources from excess nutrients, sediment, and other pollutants coming from the agricultural watershed.
- Reestablish a functional Coastal Plain Small Swamp Stream wetland complex that creates terrestrial and aquatic habitat and connects to the existing floodplain corridor along Swift Creek.

The objectives that must be accomplished to reach these goals are:

- Restore 6,987 linear feet of stable stream channel with the appropriate pattern, profile, and dimension that can support a sand transport system.
- Connect the stream to a functioning floodplain.

- Fill and plug ditches in the drained hydric soils to restore saturated hydrologic conditions for 5% of the growing season.
- Plant tree species typical of a Coastal Plain Small Swamp Stream along the UTSC riparian corridor and floodplain as well as in the restored wetland.

8.1.1 Designed Channel Classification

The UTSC has been channelized and extensively disturbed as a result of agricultural use. Both Priority 2 and Priority 3 approaches will be used to restore this stream. The division of reaches and priority types can be seen in Table 1.

Reach 1 extends from Stations 10+00 to 22+65, which is the first 1,224 linear feet of existing channel. A Priority 3 approach was used within the existing stream corridor and belt width with adjustments made to the stream pattern and dimension (Rosgen 1997). The width/depth ratio will be increased and the banks sloped back to establish the appropriate entrenchment ratio for the design channel. A B5c channel will be created with a sinuosity of 1.03 for 1,265 linear feet of stream. The Mitchell River Headwaters provided the reference morphological criteria and hydraulic geometry relationships from which the proposed design was based (Table 4).

Reaches 2 (22+65-37+30), 3 (37+30-52+90), and 4 (52+90-79+87), which cover the remainder of the stream, will be restored using a Priority 2 approach (Rosgen 1997). This method involves reestablishing a natural profile, planform, and cross-section on the existing channel elevation. The restoration will create a bankfull channel with a new floodplain and the design bankfull stage will equal the new floodplain elevation (bank height ratio = 1.0). The new channel will meander within an approximate belt width of 45 to 100 feet as determined by criteria from the reference reach. Grading will be conducted to establish a floodplain and the appropriate cross-sectional area. A total of three stream crossings will be maintained for the landowner to allow access across the easement to agricultural lands. A C5 channel morphology with a sinuosity ranging from 1.05-1.27 will restore 5,114 linear feet of existing stream to 5,722 linear feet of restored channel. North Prong Creek was the reference site used to develop the morphological criteria and hydraulic geometry relationships that were the basis for the proposed stream dimension, pattern, and profile.

The sediment regime in the UTSC is dominated by sand (Appendix E). In a predominantly sand system, the bed is mobilized during storm events, because small sand particles move during turbulent flow. Typical pool and riffle features do not exist in a sand system. Instead, these features shift as sand dunes build up and break down throughout the channel. The dune/anti-dune processes maintain stability in the channel. If there are impediments to these shifting sand processes, the sand can become more turbulent and form powerful waves throughout the channel. For this reason, a limited amount of stream structures will be installed in the restored reaches. Both Reach 2 and Reach 3 will receive one riffle grade control structure, which will stabilize sections of the profile where the channel will need to be built up to a certain elevation. Three log drop structures will be placed in Reach 3; these structures are designed to provide grade control and stability (refer to the details on Stream Plan Sheet 2). The log drop structures will also be more typical of in-stream habitat found in a small Coastal Plain Small Stream Swamp complex.

In order to promote dune/anti-dune processes in the channel, a gravel/sand starter bed will be installed over the existing clay bed in reaches 2, 3, and 4. Approximately 0.2 foot of pea gravel overlaid with 0.3-0.5 foot of sand will be placed in the channel. The profile will be constructed 0.5-0.7 foot lower to accommodate this increase in elevation once the starter bed is in place.

Seven agricultural ditches will still flow into the UTSC. In order to improve the quality of the ditch drainage entering the stream, water quality treatment areas will be constructed within the new floodplain.

These areas will consist of shallow depressions that will slow and treat water before it enters the stream. These features are shown in Stream Detail Sheet 2. The inlet and outlets to the water quality treatment areas will be strengthened with rock stabilization. A depression of six inches or less will be graded to provide storage and treatment of the ditch run-off before it reaches the UTSC. A total of six water quality areas will be installed along the UTSC where ditches join the stream. A larger channel that enters the stream from the southwest corner of the project will not receive a water quality treatment area. This straightened channel receives drainage from an approximately 100-acre watershed and has an intermittent flow regime. An in-line detention structure would influence the flow characteristics of the channel and therefore the channel will remain free-flowing. A vegetated riparian buffer will be established adjacent to this feature within the easement boundary. All of the water treatment areas will be planted with native species as described in Section 8.4.1.

Coir fiber matting, seeding, and mulching will be used to provide temporary stabilization on the newly graded stream banks and live stakes will be planted to provide long-term rooting strength.

8.1.2 Target Plant Communities

The design vegetative community for both the restored wetland and the UTSC is a Coastal Plain Small Stream Swamp (Brownwater subtype) as described by Schafale and Weakley (1990). This community type fits into the natural topography of the project watershed. The Coastal Plain Small Stream Swamp is characterized by a variable canopy, which can be dominated by combinations of bald cypress (*Taxodium distichum*), water tupelo (*Nyssa aquatica*), and various bottomland hardwoods such as swamp chestnut oak (*Quercus michauxii*), Shumard oak (*Q. shumardii*), cherrybark oak (*Q. pagoda (falcata var. pagodaefolia*)), laurel oak (*Q. laurifolia*), black oak (*Q. nigra*), willow oak (*Q. phellos*), sweetgum (*Liquidambar styraciflua*), sugarberry (*Celtis laevigata*), sycamore (*Platanus occidentalus*), river birch (*Betula nigra*), green ash (*Fraxinus pennsylvanica*), black willow (*Salix nigra*), and swamp cottonwood (*Populus heterophylla*). Understory species include American hornbeam (*Carpinus caroliniana*), Carolina ash (*Fraxinus caroliniana*), American holly (*Ilex opaca*), and red maple (*Acer rubrum*).

8.2 Sediment Transport Analysis

The UTSC is a sand-dominated system and sand channels have a unique transport process where particles are suspended in the water column during turbulent flows. During fully turbulent flow, all of the sand can move, but this is rarely the case. In partial transport scenarios, there is a complex relationship between the sand being suspended and the sand slowly depositing back on the bed.

Sand streams have thick plane beds during low flow conditions. Bed variations (pools) only result from scenarios (i.e., objects in the stream) that would induce local scour. At high flows, dunes form and they move downstream by eroding their faces and re-depositing downstream. At bankfull flows, these dunes can wash out causing the plane bed to reform at a lower elevation with the volumetric difference in sediment moving downstream in suspension. During extreme conditions, standing waves can form, and the undulations can extend to the clay streambed forming anti-dunes. The migration of anti-dunes upstream consequently forces the waves with them. In the proposed restoration, this process provides the mechanism by which sediment transport will occur and provide bed heterogeneity.

Sand channels must have adequate capacity to allow dunes to form and move. This design capacity is related to the available sediment supply. The agricultural nature of the watershed and the existing sediment sampled in the channel suggest the availability of sufficient sediment to support this design system. These "reference transport conditions" were limited in the project stream but are quite common and visible in many stable and quasi-stable channels in the Coastal Plain. The shape of the rigid streambed and the thickness of sand in the reference sections serve as the criteria for the design of the

restoration reaches. The hydraulics of similar sections associated with the sand beds allows for scaling of the parameters for the restored reaches.

The design channels in Reaches 2 - 4 will be a C5 type with silt/clay banks. The channel will be excavated approximately 0.5-0.7 foot below the finished grade elevation and backfilled with a small gravel/sand bed (0.2 foot gravel/0.3-0.5 foot sand) providing the mechanism for the dune formation. The dunes will serve as the primary resistance in the channel until vegetation establishes. The starter bed will allow for normal dune function immediately following construction and will help to prevent bed degradation and erosion. The design slope associated with the pattern layout has been sized to accommodate the sand transport processes. As has been previously discussed in Section 8.1.1, several rigid structures have also been designed to serve as grade control and compliment the sand channel design.

8.3 Wetland Hydrologic Modifications

The restoration of wetland hydrology will focus on removing the ditch network that drains off all excess surface water and groundwater within the upper horizons. The restoration actions are shown on the Wetland Plan Sheets.

8.3.1 Narrative of Modifications

To restore the wetland, the existing ditch network will be plugged and filled to block water from leaving the site. Ditch plugs will be placed in the four existing ditch outlets. At the downstream end of the wetland site, a rock-stabilized outlet will be installed to prevent the channel from reforming. In addition to blocking the major outlets from the site, KCI will also recreate wetland microtopography. The site will be graded to form small depressions and rises throughout the site that resemble the minor variations in elevation found in a natural wetland system. These modifications will allow precipitation and overland flow to remain on the wetland site. The removal of the ditches will also raise the groundwater level.

8.4 Natural Plant Community Restoration

8.4.1 Stream Riparian Planting

On the restored stream banks, live stakes will be used in conjunction with the native herbaceous seed mix to provide natural stabilization. Appropriate species identified for live staking include:

Silky dogwood	Cornus amomum
Black willow	Salix nigra
Elderberry	Sambucus canadensis

A herbaceous seed mix composed of the appropriate native species will also be developed and used to further stabilize and restore the riparian and bank zones.

Riparian plantings shall consist of native woody species. KCI will plant 436 stems per acre (10 feet by 10 feet spacing) to achieve a mature survivability of 320 stems per acre. Plant placement and groupings will be randomized during installation in order to develop a more naturalized appearance. Woody vegetation planting will be conducted during dormancy. Species to be planted in the floodplain area will consist of at least five of the following:

River birch	Betula nigra
Beautyberry	Callicarpa americana

Sugarberry	Celtis laevigata
Persimmon	Diospyros virginiana
Green ash	Fraxinus pennsylvanica
Sycamore	Platanus occidentalis
Swamp chestnut oak	Quercus michauxii
Willow oak	Quercus phellos
Possumhaw viburnum	Viburnum nudum

Species to be planted in the riparian area leading up from the floodplain may consist of the following:

Shagbark hickory	Carya ovata
Black walnut	Juglans nigra
Southern red oak	Quercus falcata

8.4.2 Wetland Planting

Plantings shall consist of native species commonly found in Coastal Plain Small Stream Swamp communities and will be planted at a density of 436 trees per acre (10 feet by 10 feet spacing) to achieve a mature survivability of 320 trees per acre. Plant placement and groupings will be randomized during installation in order to develop a more naturalized appearance. Woody vegetation planting will be conducted during dormancy. Tree species to be planted at the wetland site may consist of the following species. Trees from Zone A will be planted in the lowest, wettest areas of the wetland near the former outlet. Species from Zone B will likely cover the largest area and consist of a mixture of obligate and facultative species that will do well in fluctuating water levels. Zone C trees will be planted upper edges of the wetland.

Zone A

Lonen				
Water hickory	Carya aquatica	OBL		
Green ash	Fraxinus pennsylvanica	FACW		
Water tupelo	Nyssa aquatica	OBL		
Bald cypress	Taxodium distichum	OBL		
Possumhaw viburnum	Viburnum nudum	FACW+		
Zone B				
Green ash	Fraxinus pennsylvanica	FACW		
Water tupelo	Nyssa aquatica	OBL		
Laurel oak	Quercus laurifolia	FACW		
Swamp chestnut oak	Quercus michauxii	FACW-		
Willow oak	Quercus phellos	FACW-		
Possumhaw viburnum	Viburnum nudum	FACW+		
Zone C				
Beautyberry	Callicarpa americana	FACU-		
Laurel oak	Quercus laurifolia	FACW		
Swamp chestnut oak	Quercus michauxii	FACW-		
Cherrybark oak	Quercus pagoda	FAC+		
Willow oak	Quercus phellos	FACW-		

8.4.3 On-Site Invasive Species Management

Currently, there are no invasive species present at either the stream or wetland restoration sites, because both are under agricultural production. No management actions are anticipated at this time.

9.0 PERFORMANCE CRITERIA

Both the stream and wetland restoration sites will be monitored to evaluate project success. For the stream, monitoring shall consist of the collection and analysis of stream stability and riparian/stream bank vegetation survivability data to support the evaluation of the project in meeting established restoration objectives. Specifically, stream success will be assessed utilizing measurements of stream dimension, pattern, and profile, site photographs, and vegetation sampling. The wetland site will be deemed successful once hydrology is established and vegetation success criteria are met.

9.1 Stream Stability

The purpose of monitoring is to evaluate the stability of the restored stream. Following the procedures established in the USDA Forest Service Manual, *Stream Channel Reference Sites* (Harrelson et. *al* 1994) and the methodologies utilized in the Rosgen stream assessment and classification system (Rosgen 1994 and 1996), data collected will consist of detailed dimension and pattern measurements, longitudinal profiles, and bed materials sampling.

Dimension

Fourteen permanent cross-sections will be established and used to evaluate stream dimension. One pool and one riffle cross-section each will be installed on Reach 1. Reaches 2, 3, and 4 will have three, four, and five cross-sections, respectively. Permanent monuments will be established by either conventional survey or GPS. The cross-section surveys shall provide a detailed measurement of the stream and banks, to include points on the adjacent floodplain, at the top of bank, bankfull, at all breaks in slope, the edge of water, and thalweg. Subsequently, width/depth ratios and entrenchment ratios will be calculated for each cross-section.

Cross-section measurements should show little or no change from the as-built cross-sections. If changes do occur, they will be evaluated to determine whether they are minor adjustments associated with settling and increased stability or whether they indicate movement toward an unstable condition.

Pattern

Measurements associated with the restored channel pattern shall be taken on the section of the stream included in the longitudinal profiles. These will include belt width, meander length, and radius of curvature. Based on these values, sinuosity, meander width ratio, radius of curvature, and meander length/bankfull width ratios will be calculated.

Profile

A total of 3,000 linear feet of profile will be surveyed along the restored stream. Longitudinal profiles will be conducted on 500 linear feet of Reach 1. An additional 2,500 linear feet of profile measurements will be completed along reaches 2, 3, and 4. Measurements will include average water surface slopes for all of the reaches as well as pool and riffle slopes and pool-to-pool spacing for Reach 1. Annual measurements should indicate stable bedform features with little change from the as-built survey.

Bed Materials

Pebble counts will be conducted at each representative cross-section for the purpose of repeated classification and to evaluate sediment transport.

Photograph Reference Points

Photograph reference points (PRP) will be established to assist in characterizing the site and to allow qualitative evaluation of the site conditions. The location and bearing/orientation of each photo point will be permanently marked in the field and documented to allow for repeated use.

Cross-section Photograph Reference Points

Each cross-section will be photographed to show the form of the channel with the tape measure stretched over the channel for reference in each photograph. Effort will be made to consistently show the same area in each photograph.

Longitudinal Photograph Reference Points

Additional PRPs will be located as needed to document the condition of specific in-stream structures such as log drop structures.

9.2 Stream Riparian Vegetation

KCI will monitor vegetation for five years following the first growing season. The success of the riparian buffer plantings will be evaluated using eighteen (2% of the total buffer area) ten by ten meter vegetative sampling plots. The corners of each monitoring plot will be permanently marked in the field. Data will be collected at each plot for: total number of stems, species, percent survival, height, estimated percent cover of all species, and evidence of insects, disease or browsing. Additionally, a photograph will be taken of each plot and will be replicated each monitoring year. Riparian vegetation must meet a minimum survival success rate of 320 stems/acre after five years. If monitoring indicates that the specified survival rate is not being met, appropriate corrective actions such as controlling invasive species, removing dead/dying plants and replanting will be undertaken. Non-target species must not constitute more than 20% of the woody vegetation based on permanent monitoring plots.

9.3 Wetland Hydrology

Groundwater elevations will be monitored to evaluate the attainment of jurisdictional wetland hydrology. Verification of wetland hydrology will be determined by automatic recording well data collected within the project wetland. Within the restoration area, four automatic recording gauges will be established to cover a density of one automatic well per four acres. Daily data will be collected from the automatic gauges over the 5-year monitoring period following wetland construction.

Wetland hydrology will be considered established if well data from the site indicate that groundwater is within 12 inches of the soil surface for 5% of the growing season during normal weather conditions. The growing season was taken from COOP Station 318500, which is located in Tarboro in Edgecombe County. According to the NRCS, the growing season is considered to be the period with a 50% probability that the daily minimum temperature is higher than 28° F. The growing season for Edgecombe County extends from March 21 to November 11 for a total of 235 days (USDA, NRCS 2002). Based on this growing season, success will be achieved at the project site if the water table is within 12 inches of the soil surface for 12 consecutive days or more during the growing season.

9.4 Wetland Vegetation

The success criteria for the planted species in the wetland restoration area will be based on survival and growth. Beginning at the end of the first growing season, KCI will monitor vegetation for five years following the planting.

Twelve permanent monitoring plots measuring ten by ten meters will be established in the wetland restoration area ensuring a 2% monitoring coverage of the total restoration acreage. Plots will be systematically located to ensure even placement. Data will be collected at each plot for: total number of stems, species, percent survival, height, estimated percent cover of all species, and evidence of insects, disease or browsing. Survival of planted species must be 320 stems/acre at the end of five years of monitoring. Non-target species must not constitute more than 20% of the woody vegetation based on permanent monitoring plots. Management actions such as controlling invasive species, removing dead/dying plants and replanting will be undertaken as necessary.

9.5 Schedule/Reporting

The first scheduled monitoring will be conducted during the first full growing season following project completion. Monitoring shall subsequently be conducted annually for a total period of five years.

Annual monitoring reports will be prepared and submitted after all monitoring tasks for each year are completed. The report will document the monitored components of the restoration plan (hydrology and vegetation) and include all collected data, analyses, and photographs. Each report will provide the new monitoring data and compare the most recent results against previous findings. The monitoring report format will be similar to that set out in the most recent EEP monitoring protocol.

Variations from the designed stream and wetland can be anticipated due to unknown site conditions, inputs from outside the restoration site, regional climatic variations, or acts of God, etc. Regular management activities will be implemented as necessary to ensure that the goals and objectives of the project are met. These activities will be conducted throughout the year and may include invasive species control or other management activities. If the monitoring identifies failures in the project site, a remedial action plan will be developed to investigate the causes of the failure and propose actions to rectify the problem.

10.0 REFERENCES

- Dunne, T. and L.B. Leopold. 1978. Water in Environmental Planning. New York: W.H. Freeman and Company.
- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Harman, W.A., G.D. Jennings, J.M. Patterson, D.R. Clinton, L.O. Slate, A.G. Jessup, J. R. Everhart, and R.E. Smith. 1999. Bankfull Hydraulic Geometry Relationships for North Carolina Streams.
 Wildland Hydrology. AWRA Symposium Proceedings. Edited by D.S. Olsen and J.P. Potyondy. American Water Resources Association, Bozeman, MT.
- Harrelson, C.C., C.L. Rawlins, and J.P. Potyondy. 1994. Stream Channel Reference Sites: an Illustrated Guide to Field Technique. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station.
- McKerrow, A. 2003. North Carolina GAP Land Cover. Raleigh, North Carolina: North Carolina Gap Analysis Project Office.
- NCDENR, Division of Water Quality. 2004. Tar-Pamlico River Basinwide Water Quality Plan. http://h2o.enr.state.nc.us/basinwide/tarpam2004.html
- NCDENR, Division of Water Quality. 2006. Surface Water Classification. http://h2o.enr.state.nc.us/csu/index.html
- NCGS. 1985. Geologic Map of North Carolina.
- Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena 22: 169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- Rosgen, D.L. 1997. A Geomorphological Approach to Restoration of Incised Rivers. In: Wang, S.S.Y., E.J. Langendoen, and F.D. Shields, Jr. (Eds.). Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision.
- Rosgen, D.L. 1998. The Reference Reach a Blueprint for Natural Channel Design. Presented at ASCE Conference, Denver, CO.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina, 3rd Approximation. North Carolina Natural Heritage Program, NCDEHNR, Division of Parks and Recreation. Raleigh, NC.
- United States Department of Agriculture, Natural Resources Conservation Service. 2002. Wetlands Determination Table (WETS) for Edgecombe County, NC. Created 10/23/2002. Last accessed September 2006 at ftp://ftp.wcc.nrcs.usda.gov/support/climate/wetlands/nc/37065.txt
- United States Department of Agriculture, Soil Conservation Service. 1979. Soil Survey of Edgecombe County. Raleigh, NC

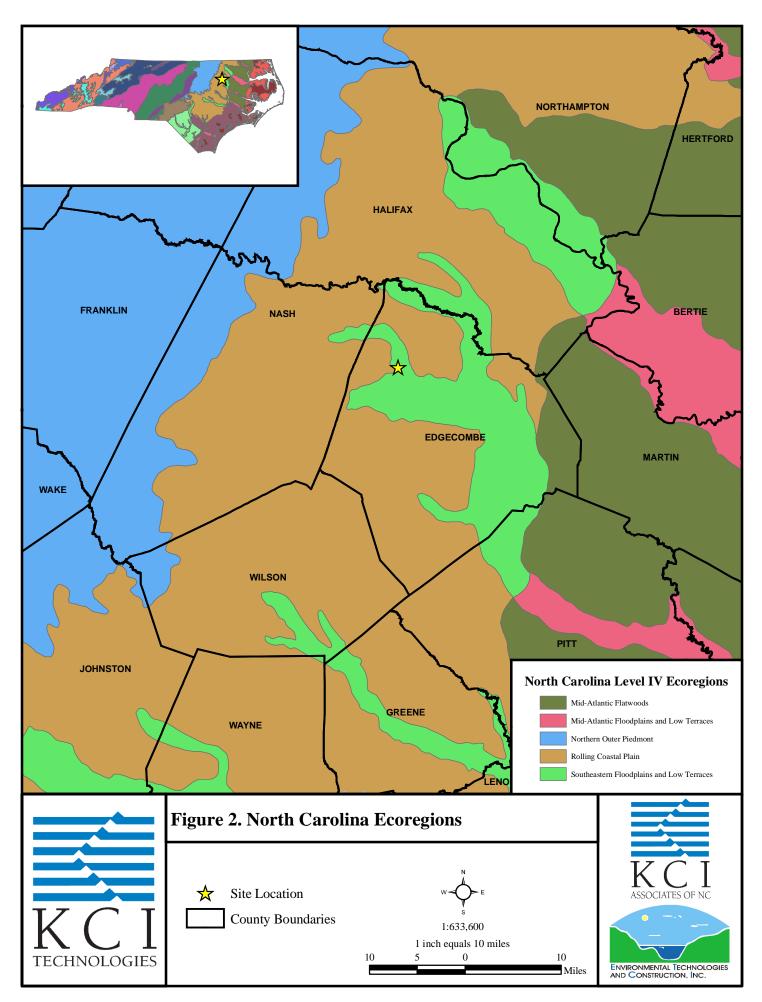
United States Department of Agriculture, Soil Conservation Service. 1986. Urban Hydrology for Small Watersheds. Technical Release 55.

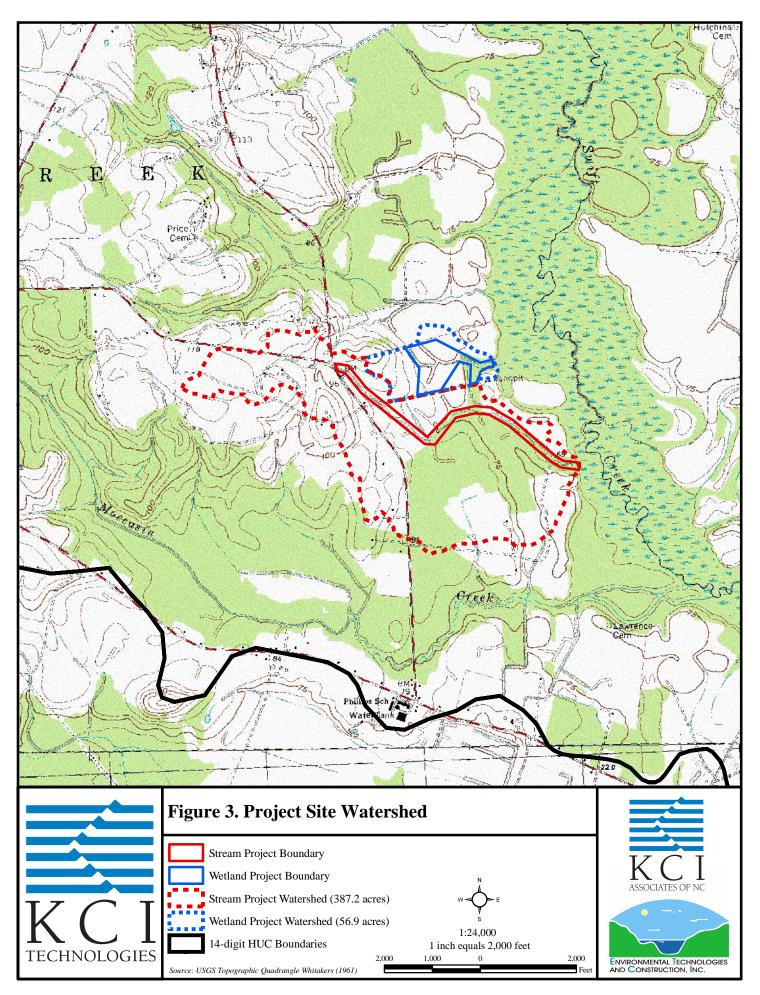
Tables

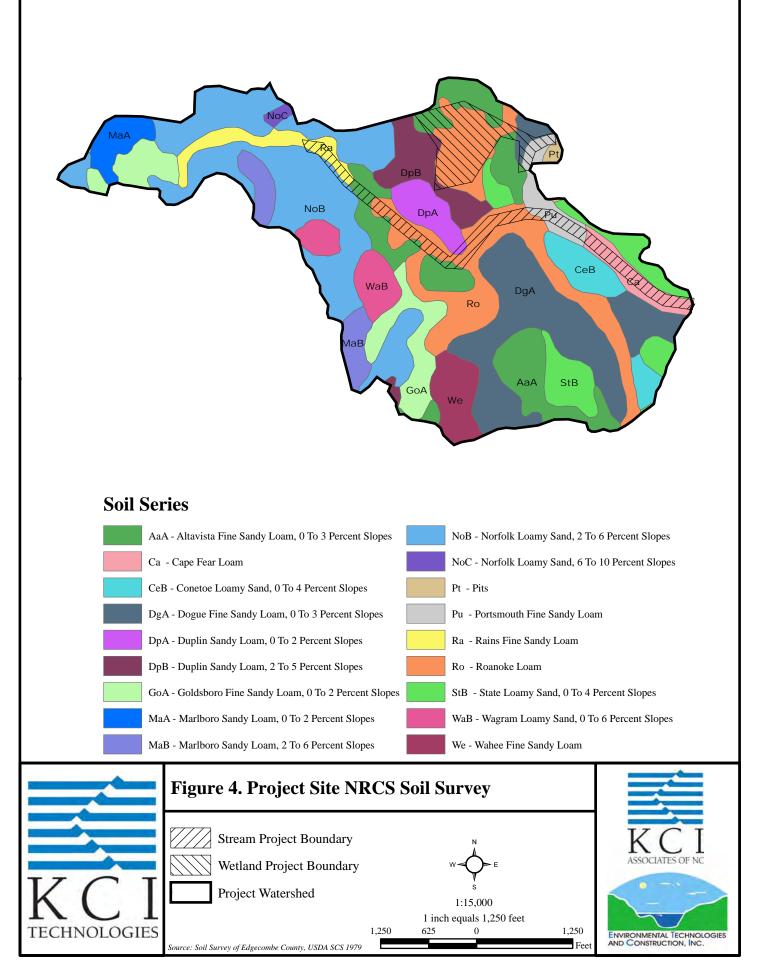
Reach	Station Range	Restoration Type	estoration Type Priority Existing Linear Approach Footage			Comments	
Reach 1	10+00 - 22+65	Restoration	P3	1,224	1,265	Connects to downstream crossing and culvert	
Reach 2	22+65 - 37+30	Restoration	P2	1,389	1,465	Connects to upstream crossing and culvert	
Reach 3	37+30 - 52+90	Restoration	P2	1,231	1,560	Begins where large ditch enters the stream and end at downstream crossing and culvert	
Reach 4	52+90 - 79+87	Restoration	P2	2,494	2,697	Connects to upstream crossing and culvert	

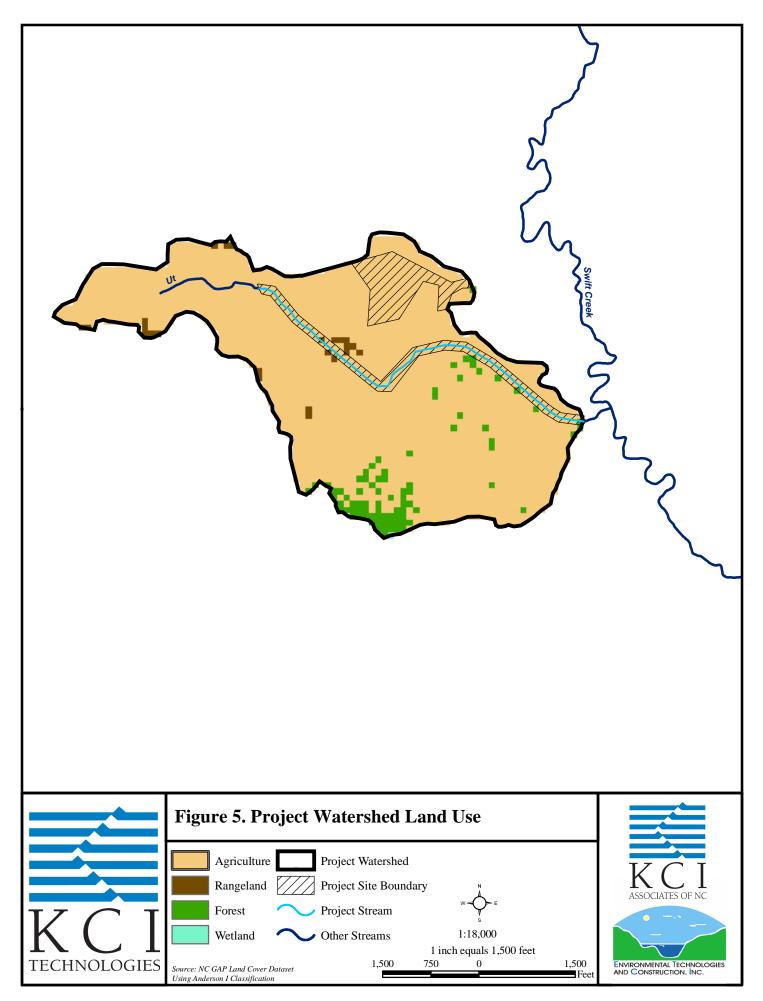
Table 2. Drainage Areas Harrell Stream Restoration							
Reach	Drainage Area (acres)						
Reach 1 (Beginning to first road crossing)	125.9						
Reach 2 (First road crossing to confluence with							
major ditch)	147.1						
Reach 3 (From confluence with major ditch to							
second road crossing)	271.3						
Reach 4 (From second road crossing to end of							
project)	387.2						

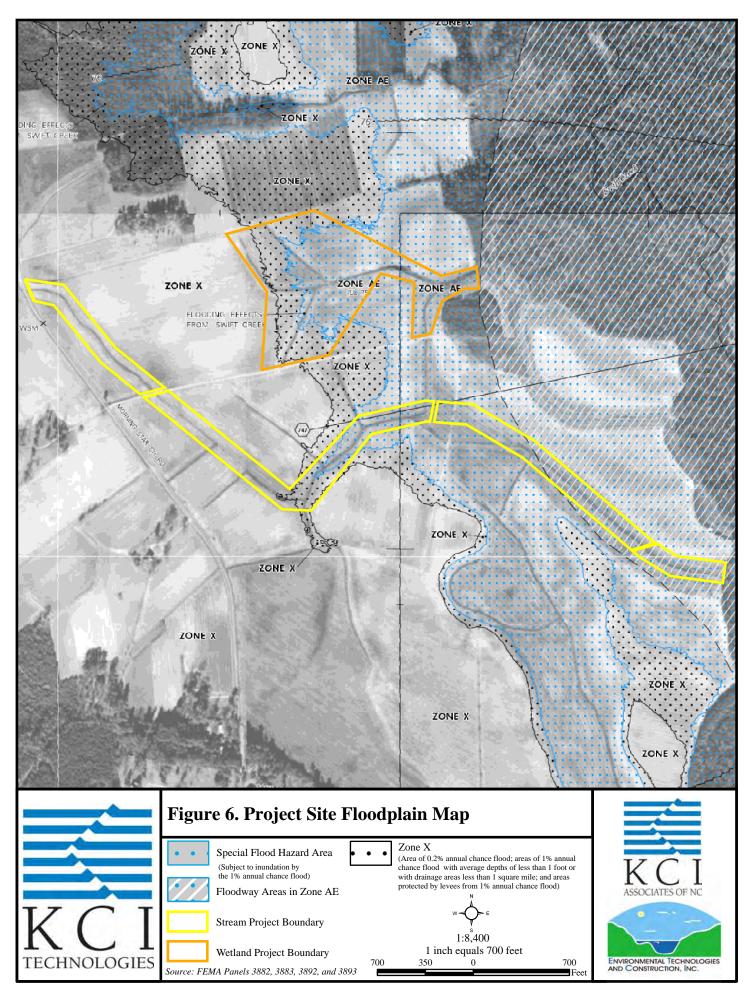

Table 3. Land Use of WatershedHarrell Stream and Wetland Restoration							
Land Use	Acreage	Percentage of Watershed					
Agriculture	419.9	94.6%					
Forest	18.7	4.2%					
Rangeland	5.3	1.2%					
Wetland	0.2	0.0%					

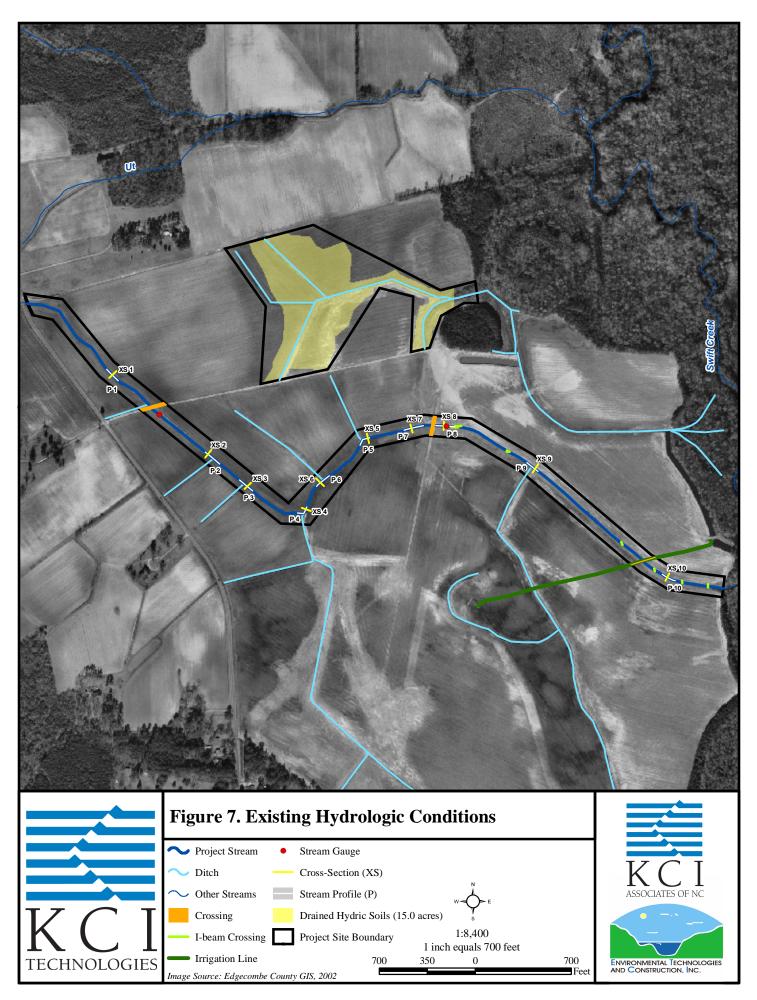

Table 4. Morphological Design Criteria

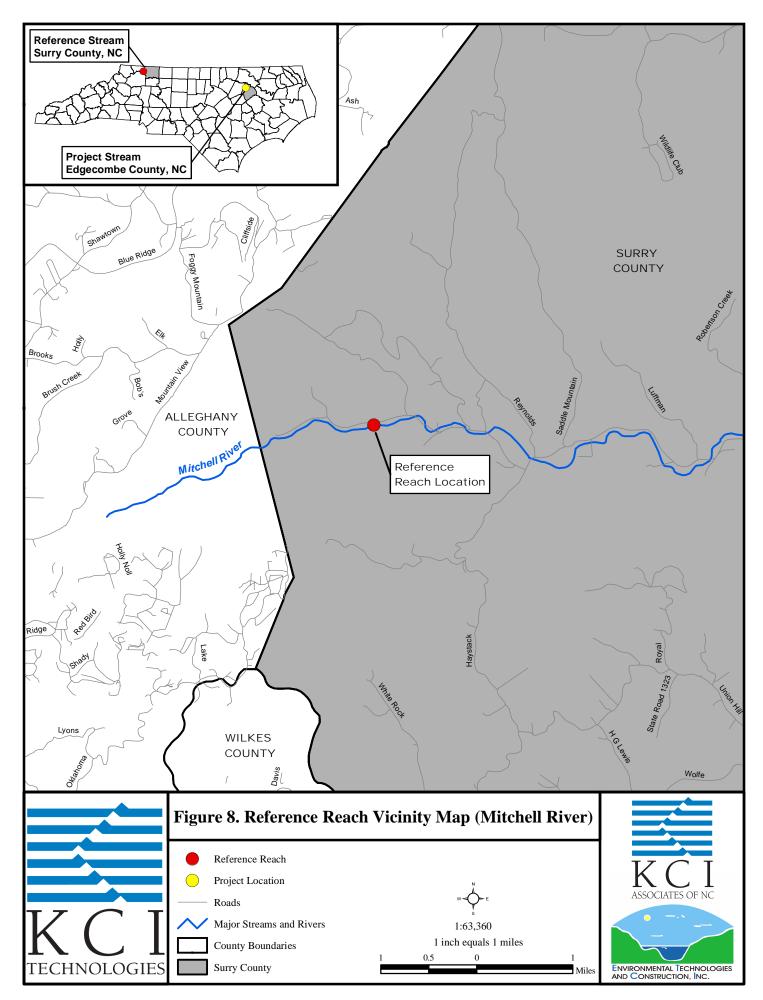

Variables		EXISTING				Ref.	Ref.	PROPOSED			
		UTSC1	UTSC2	UTSC3	UTSC4	Reach Mitchell River HW	Reach North Prong Creek	UTSC 1	UTSC 2	UTSC 3	UTSC 4
	gen Stream Type	E5	E5	E5	E5	B4c	C5	B5c	C5	C5	C5
	nage Area (mi ²)	0.197	0.230	0.424	0.605	6.0	3.04	0.197	0.229	0.424	0.605
	cfull Width (W _{bkf}) (ft)	5.4	6.1	7.6	9.5	29.2-35.0	17.8	10	10	12	13.4
	cfull Mean Depth (d _{bkf}) (ft) cfull Cross Sectional Area	1.3	1.3	1.6	1.5	2.0-2.1	1.5	0.9	1.1	1.4	1.6
	$f(tt) (ft^2)$	7.3	7.8	11.6	13.8	62.5-68.8	26.2	9.1	11.2	16.8	21.6
	th/depth Ratio (Wbkf/dbkf)	4.1	4.8	5.0	7.0	13.9-17.5	12.1	11.1	9.1*	8.6*	8.4*
	imum Depth (d _{mbkf}) (ft)	2.0	1.9	2.7	2.5	2.7-2.8	3.0	1.4	1.6	2.0	2.3
	th of Flood Prone Area	>70	>70	>70	>60	44-64	600+	18+	30+	30+	30+
	a) (ft) enchment Ratio (ER)	13.0	11.1	9.5	7.2	1.3-2.2	33.7	1.8+	3.0+	2.5+	2.2+
	er Surface Slope (S) (ft/ft)	0.004	0.007	0.006	0.0023	0.0084	0.0024	0.0067	0.0023	0.0023	0.0023
	osity (stream length/valley	1**	1**	1**	1**	1.1	1.28	1.03	1.05	1.27	1.08
leng	th) (K)	-	_								
	Pool Depth (ft)	**	**	**	**	2.7	***	1.5	***	***	***
	Riffle Depth (ft)	**	**	**	**	0.9-1.2	***	0.9	***	***	***
	Pool Width (ft)	**	**	**	**	27	***	11	***	***	***
	Riffle Width (ft)	**	**	**	**	8.7-12.3	***	10	***	***	***
	Pool XS Area (sf)	**	**	**	**	72.5	***	16	***	***	***
и	Riffle XS Area (sf)	**	**	**	**	62.5-68.8	***	9.1	***	***	***
Dimension	Pool Depth/Mean Riffle Depth	**	**	**	**	1.3-1.4	***	1.7	***	***	***
Dim	Pool Width/Riffle Width	**	**	**	**	0.9	***	1.1	***	***	***
I	Pool Area/Riffle Area	**	**	**	**	1.1	***	1.8	***	***	***
	Max pool depth/d _{bkf}	**	**	**	**	2.0-3.5	***	2.7	***	***	***
	Low Bank Height/ d _{mbkf}	2.74	2.30	2.64	1.69	-	3.0	1	1	1	1
	Mean Bankfull Velocity (V) (fps)	3.27	3.97	3.96	2.20	3.2-5.3	3.1	3.3	2.7	2.7	3.2
	Bankfull Discharge (Q) (cfs)	24	31	44-51	20-31	280	83	25-30	25-30	40-45	65-70
	Meander length (L_m) (ft)	**	**	**	**	140-500	94-143	50-200	100-200	120-240	130-260
ш	Radius of Curvature (R _c) (ft)	**	**	**	**	70-220	37-40	30-80	30-50	40-60	40-70
Pattern	Belt Width (W _{blt}) (ft)	**	**	**	**	100-400	158	45-65	45-60	60-100	50-90
P_{6}	Meander Width Ratio	**	**	**	**	3.0-14.0	8.9	4-10	4-10	4-10	4-10
	R _c /W _{bkf} Ratio	**	**	**	**	2.0-7.5	2.1-2.3	3-8	3-5	3-5	3-5
	L _m / W _{bkf} Ratio	**	**	**	**	4.0-17.1	5.3-8.0	5-20	10-20	10-20	10-20
	Valley Slope Average Water Surface	0.004	0.003	0.002	0.0014	0.009	0.0023	0.0069	0.0024	0.0029	0.0025
	Slope	0.004	0.007+	0.006+	0.0023+	0.0084	0.0024	0.0067	0.0023	0.0023	0.0023
	Riffle Slope	**	**	**	**	0.007- 0.027	***	0.0085	***	***	***
	Pool Slope	**	**	**	**	0.0-0.003	***	0.003	***	***	***
file	Pool to Pool Spacing	**	**	**	**	115-400	***	74-228	***	***	***
Profile	Pool Length	**	**	**	**	-	***	26-60	***	***	***
	Riffle Slope/Avg WS Slope	**	**	**	**	0.8-3.2	***	1.27	***	***	***
	Pool Slope/ Avg WS Slope	**	**	**	**	0.01-0.3	***	0.45	***	***	***
	Pool Length/ W bkf	**	**	**	**	-	***	2.6-6.0	***	***	***
	Pool to Pool Spacing/W _{bkf}	**	**	**	**	1.5-3.8	***	7.4-22.8	***	***	***
P			1.6.0			-					-

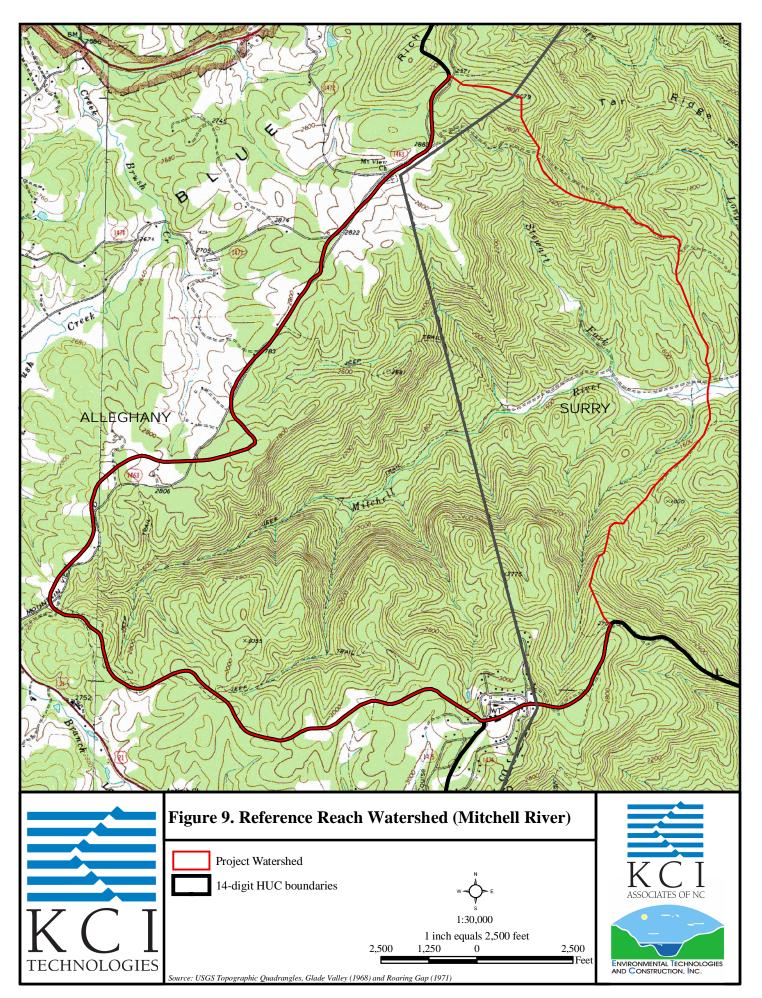

by define of both
 The width/depth ratio is lower than that typical of a C type stream, but the channel has been designed with greater depth to accommodate the formation of a dune/anti-dune sand system.
 The existing stream has been channelized and does not have a natural meander pattern with distinct pool and riffle features.
 Sand streams are not characterized by riffle and pool features, but rather by a dune/anti-dune system.
 Stream slope exceeds valley slope in reaches that are experiencing base lowering more rapidly than the existing valley gradient.

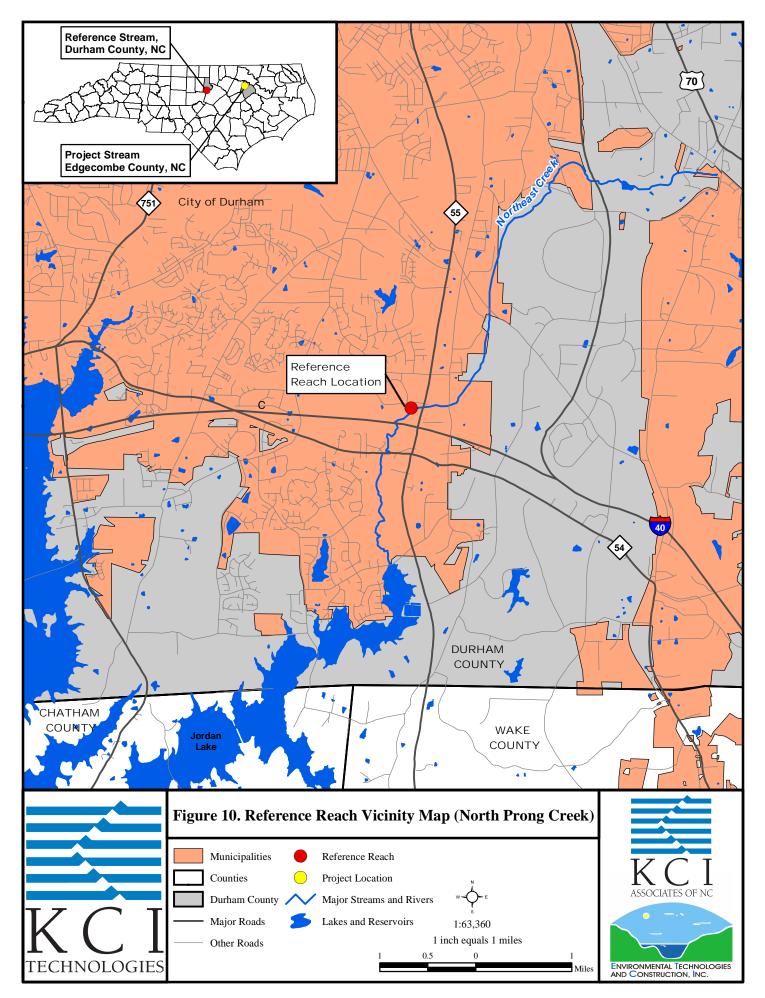

Figures

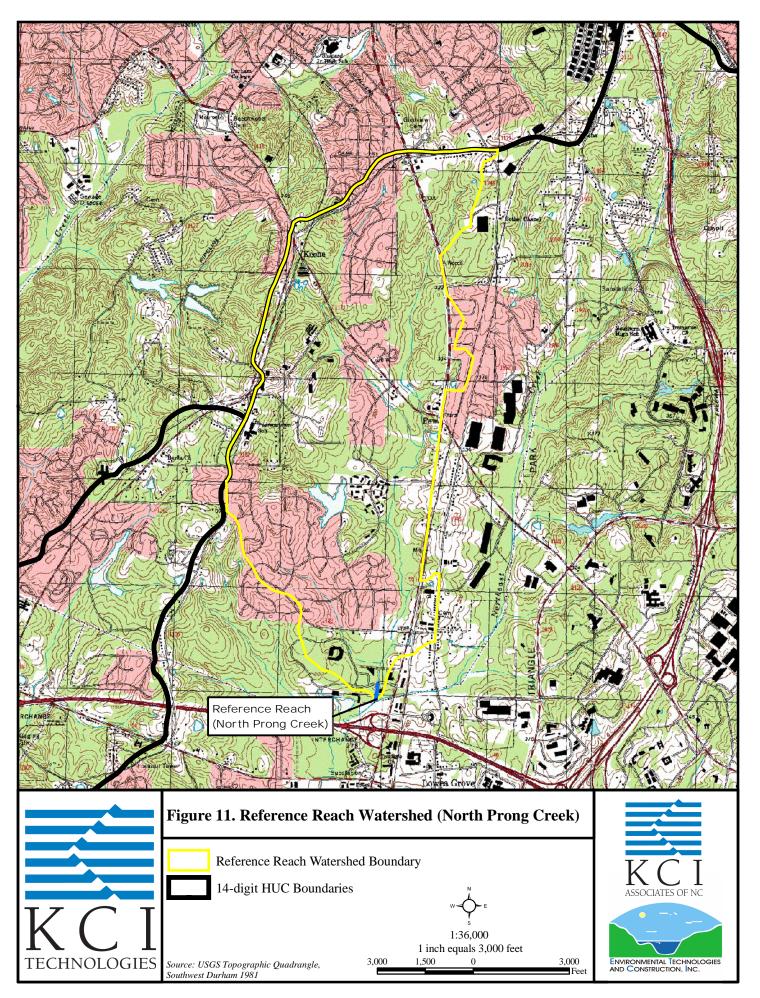


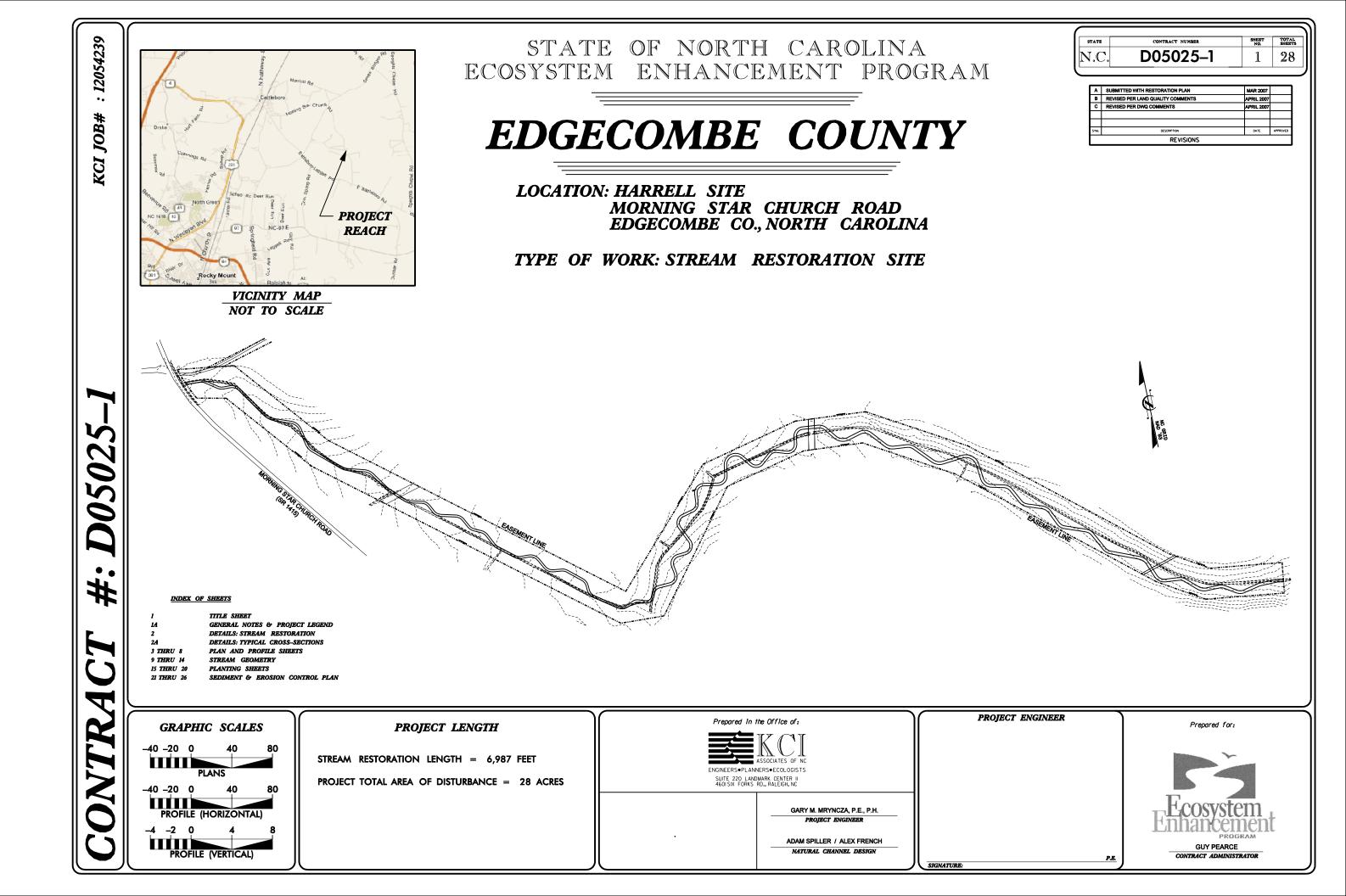












Stream Plan Sheets

GENERAL NOTES

GENERAL NOTES: BEARING AND DISTANCES: ALL BEARINGS ARE NAD 1983 GRID BEARINGS. ALL DISTANCES AND COORDINATES SHOWN ARE HORIZONTAL (GROUND) VALUES. ALL INFORMATION IS BASED ON THE FOLLOWING GPS CONTROL POINTS. GPS#4N = 828,606.509E = 2,390,243.341GPS#21N = 827,964.785E = 2,385,803.660 ELEV.= 70.590' ELEV.= ,0.000 ELEV.= 105.530' GRADING: -ALL EXCAVATED MATERIALS, INCLUDING NATURAL STONE MEETING SIZE LIMITATIONS, ARE TO BE SALVAGED FOR REUSE WITHIN THE PROJECT AT THE DISCRETION OF THE ENGINEER.

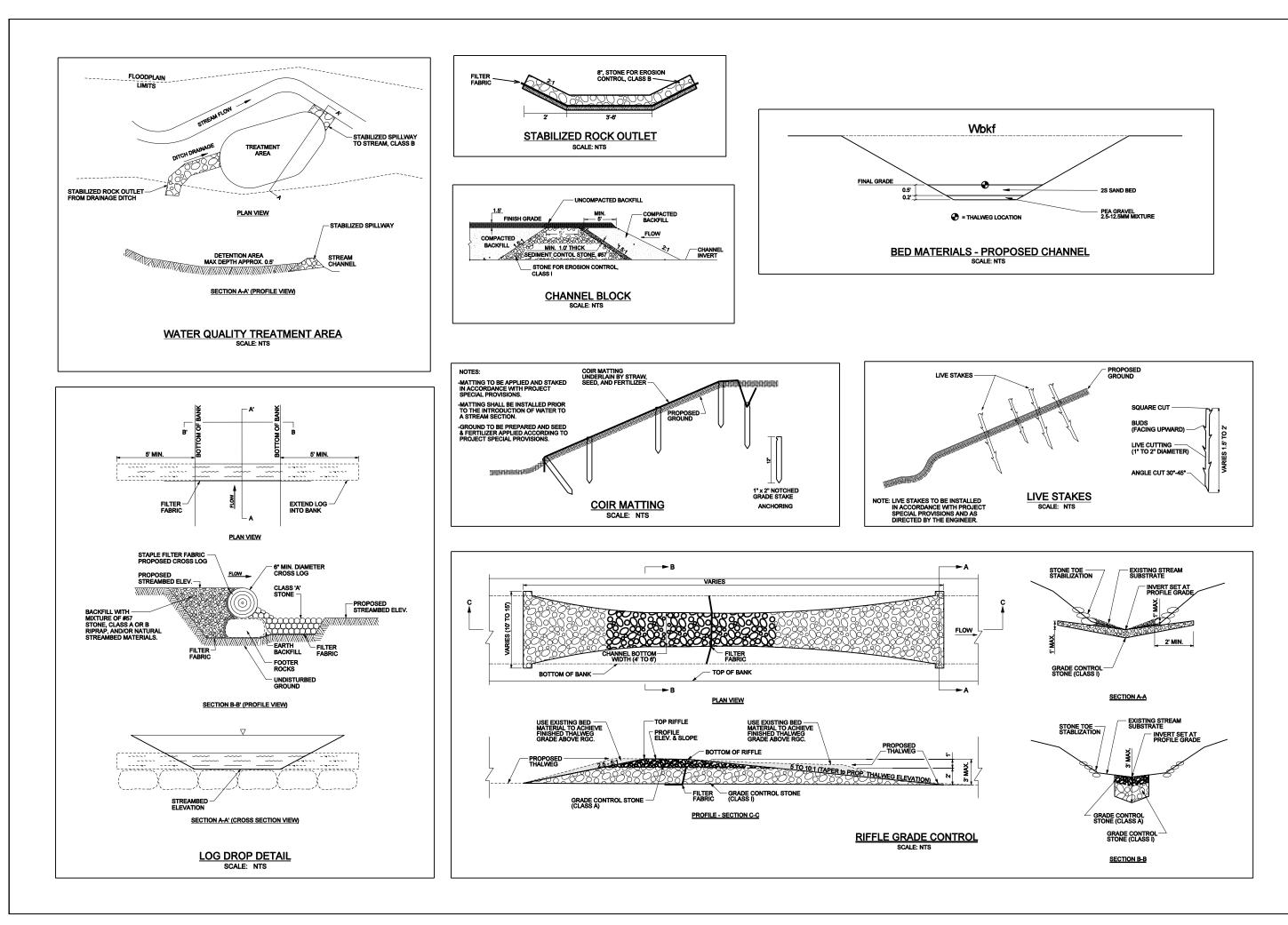
-ALL INFLECTION POINTS BETWEEN SLOPE ANGLES SHALL BE ROUNDED SLIGHTLY IN ORDER TO PROVIDE FOR SMOOTH TRANSITIONS AND A MORE NATURAL APPEARANCE.

UTILITY/SUBSURFACE PLANS: -NO SUBSURFACE PLANS ARE AVAILABLE ON THIS PROJECT. EXISTING UNDERGROUND UTILITIES HAVE NOT BEEN VERIFIED. THE CONTRACTOR IS RESPONSIBLE FOR CONTACTING A UTILITY LOCATOR AND ESTABLISHING THE EXACT LOCATION OF ANY AND ALL EXISTING UTILITIES IN THE PROJECT REACH.

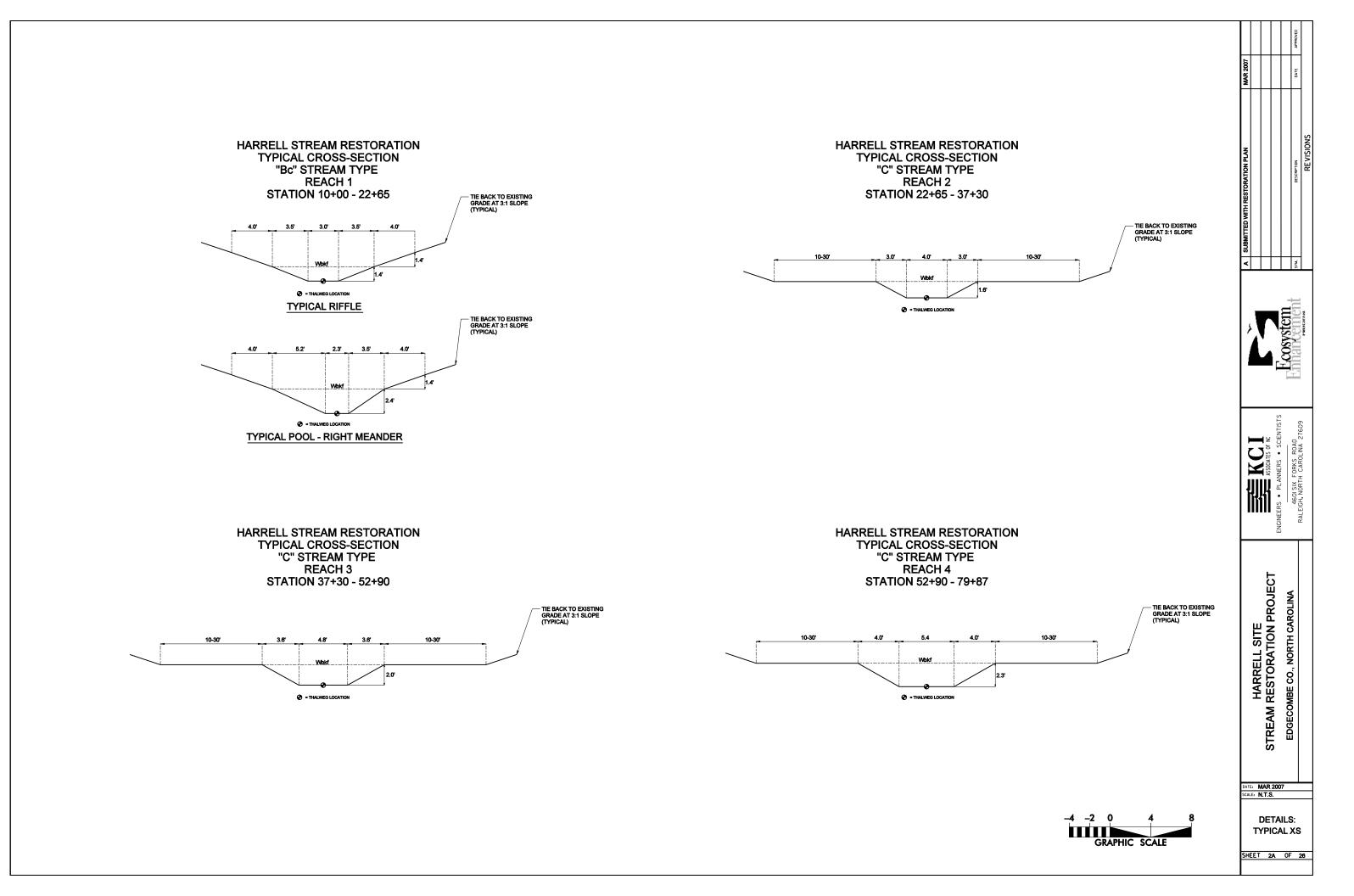
PROJECT LEGEND

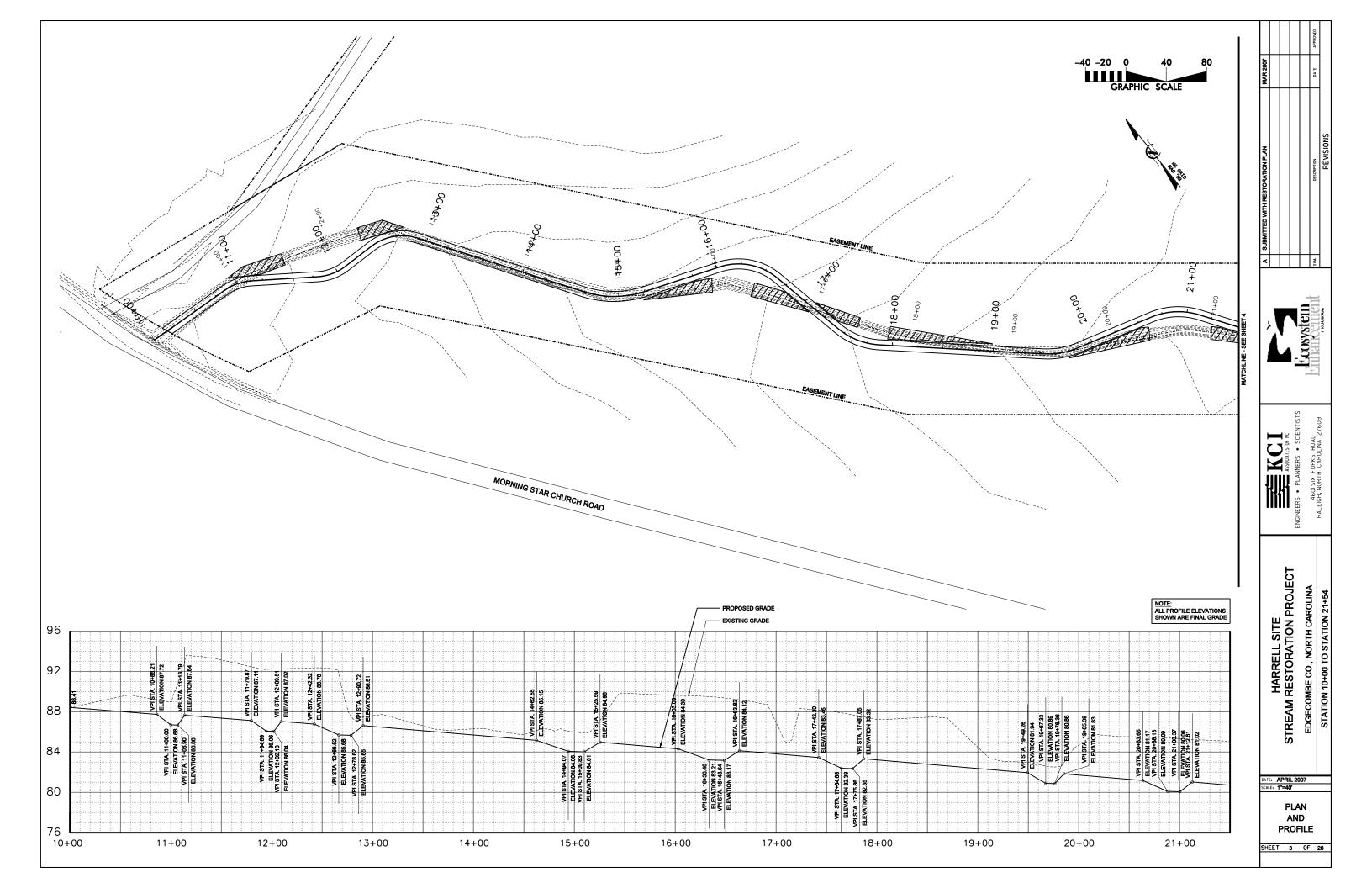
STREAM RESTORATION

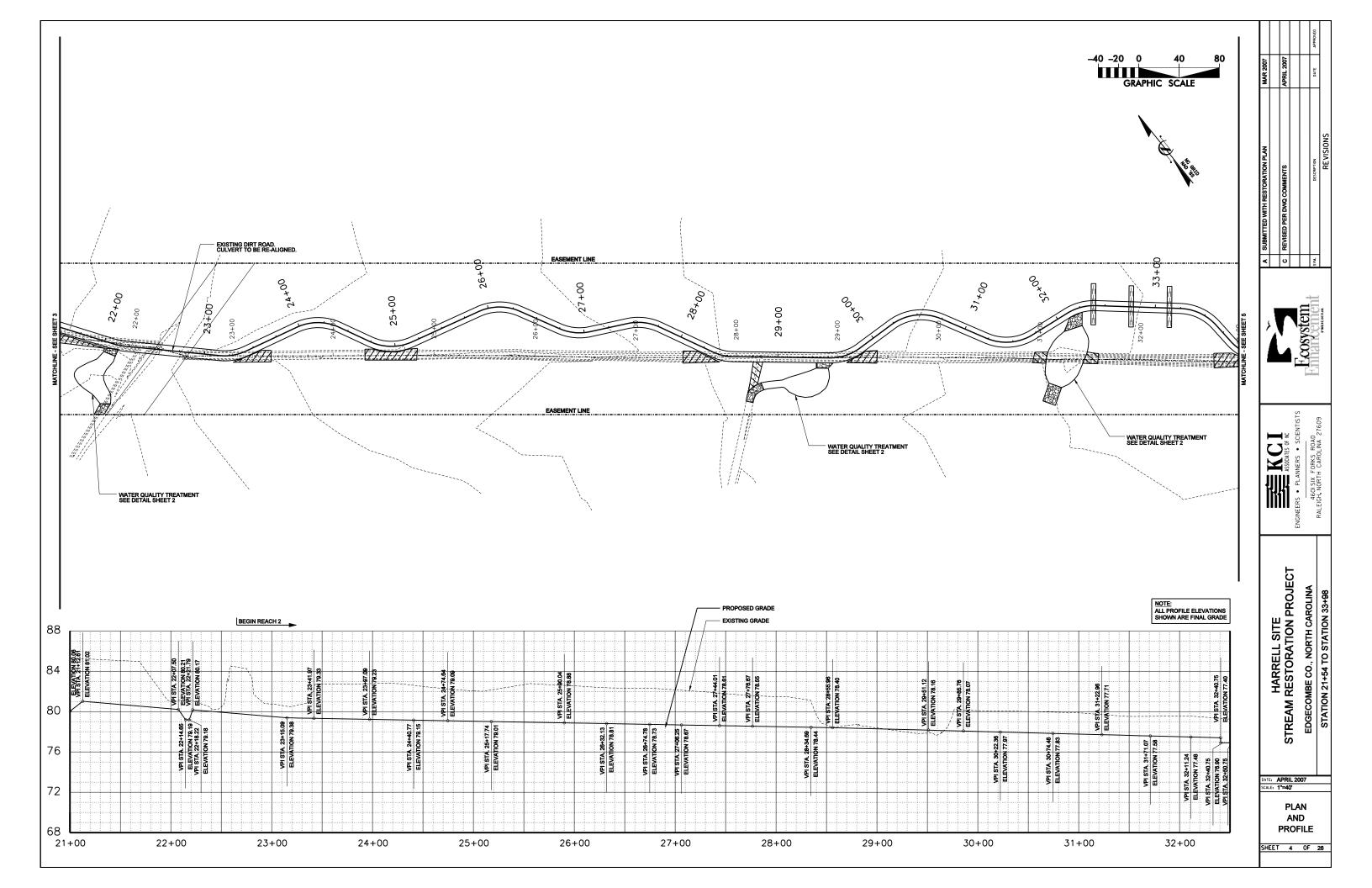
Proposed Thalweg w/Approximate Bankfull Limits	8+ 8
Proposed Channel Block	
Proposed Riffle Grade Control	
Proposed Log Drop	(3-3-3-3-)
Stabilized Rock Outlet	0530.301 2439.209

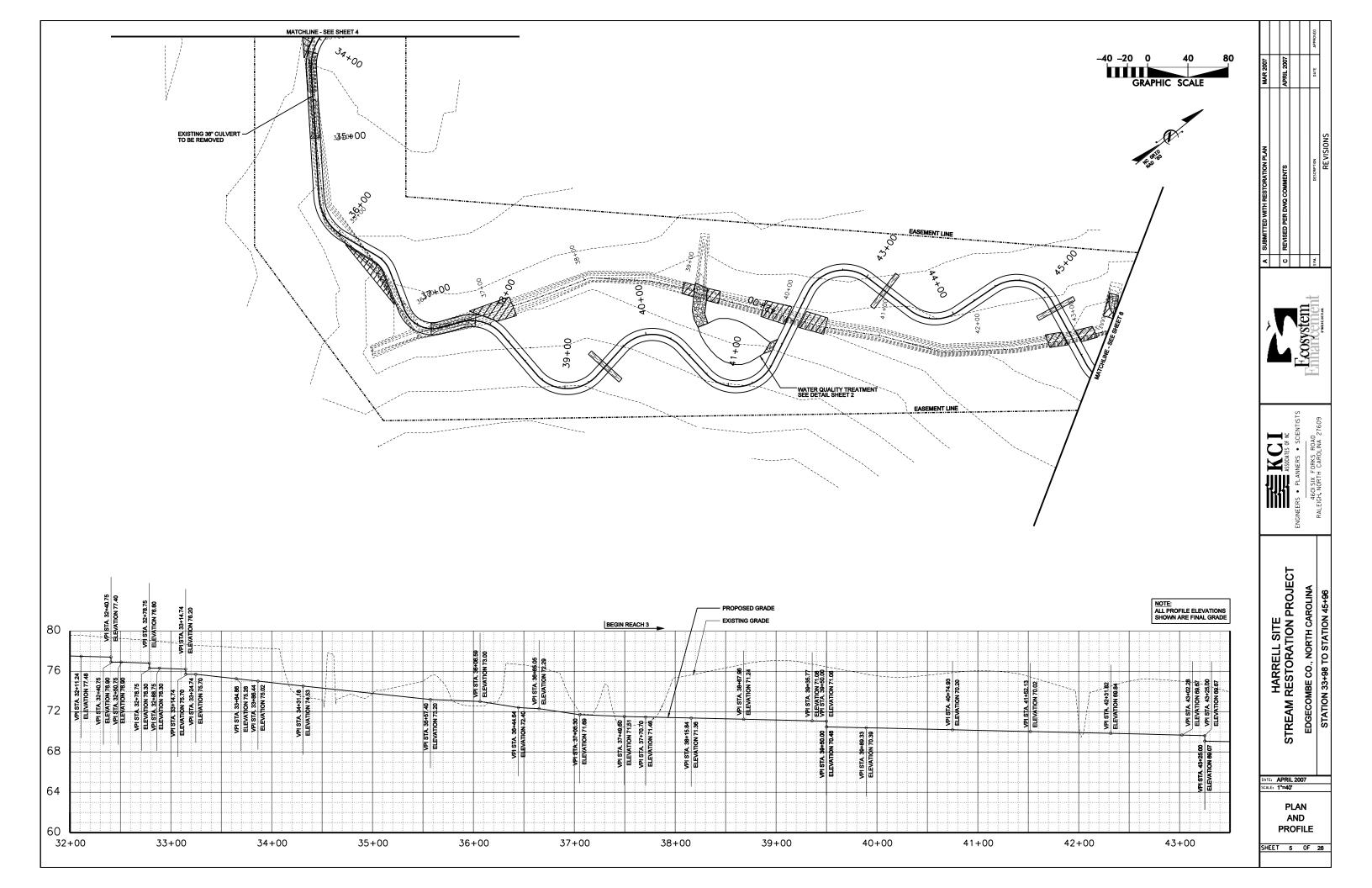

SEDIMENT & EROSION CONTROL

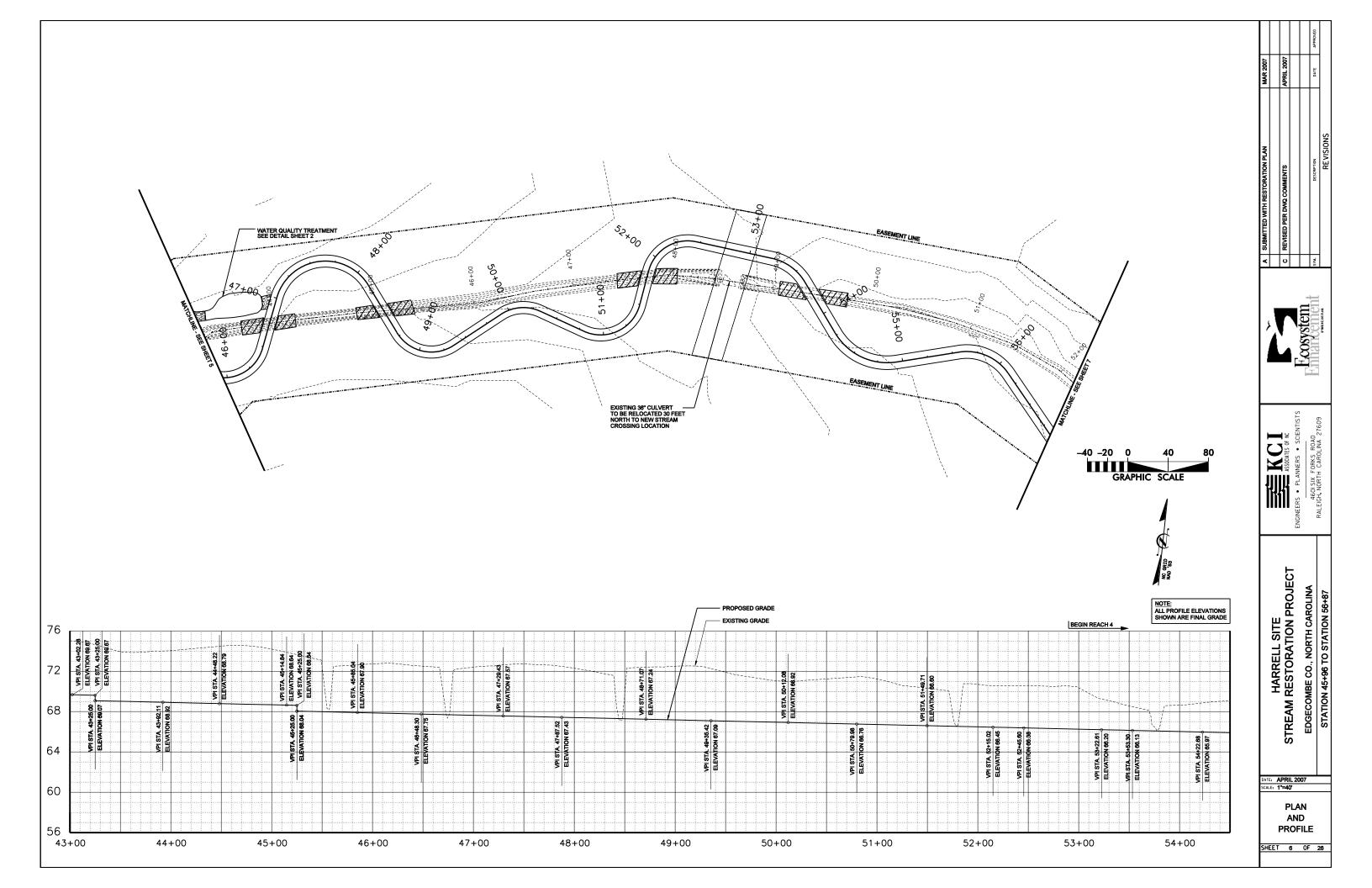
Stabilized Construction Entrance	SCE
Silt Fence	SF
Limits of Disturbance	LOD
Rock Silt Screen (Std. Drawing 1636.01)	
Temporary Stream Crossing	
Silt Fence Rock Outlet	

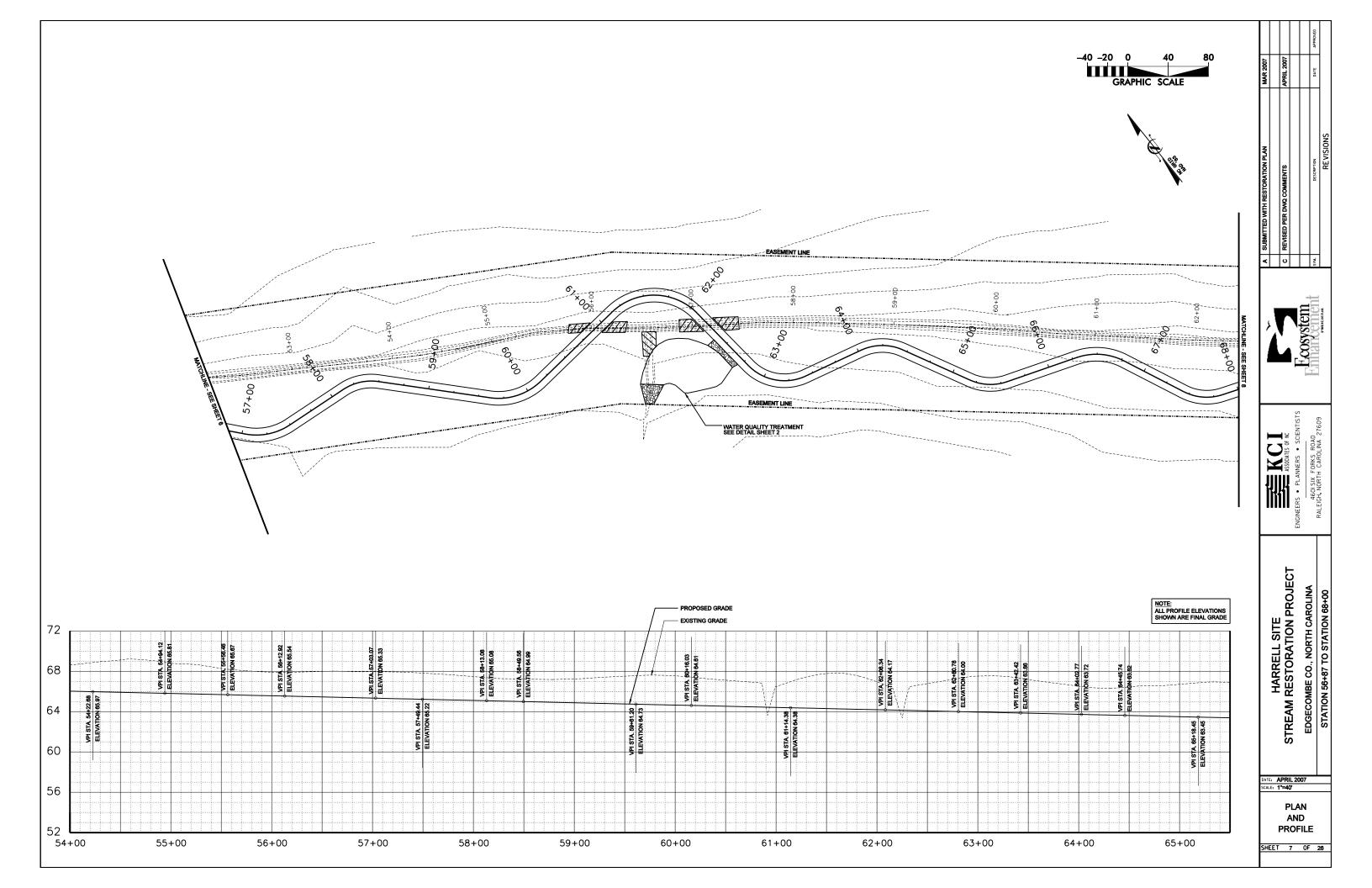

GENERAL

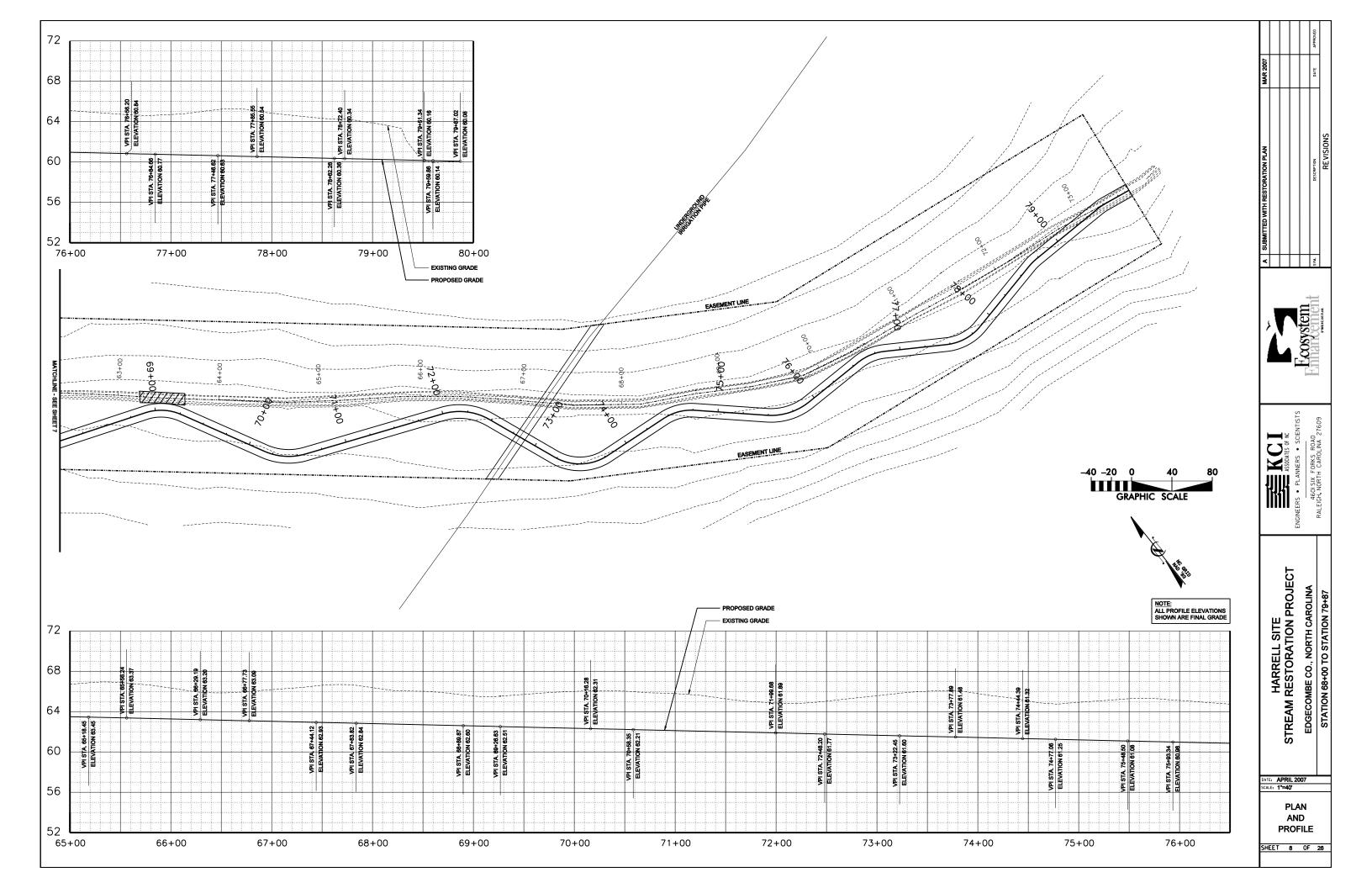

Existing Woods Line	
Minor Contour Line	
Major Contour Line	720

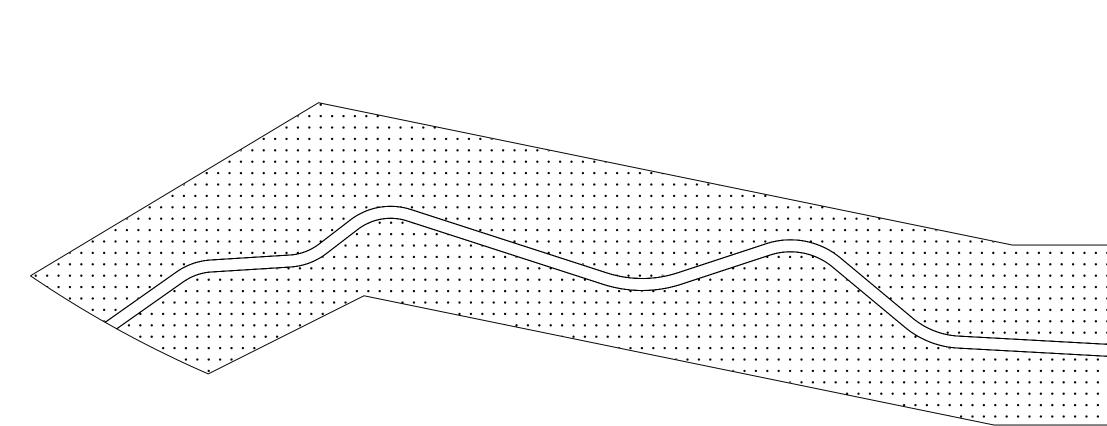

DATE: APRIL 200 SCALE: N.T.S. GENERAL & PRO. LEGE SHEET 1A	HARRELL SITE STREAM RESTORATION PROJECT	ENGINEERS • PLANNERS • SCIENTISTS		A SUBMITT C REVISED	A SUBMITTED WITH RESTORATION PLAN C REVISED PER DWQ COMMENTS	MAR 2007 April 2007	
NOT JECT	EDGECOMBE CO., NORTH CAROLINA	4601SIX FORKS ROAD	Entancement •	SYM.	DESCRIPTION	DATE	APPROVED
		RALEIGH, NURTH CAROLINA 21000	I'REUCHCAAA		REVISIONS		











PLANTING PLAN AND SPECIES COMPOSITION

ZONE A

STREAM ZONE = 1.32 - ACRE (57,508 SQ.FT.) LIVE STAKES: 1.5' TO 2' LENGTHS, 1/2" TO 2" DIAMETER, 3' CENTER SPACING, RANDOM SPECIES PLACEMENT

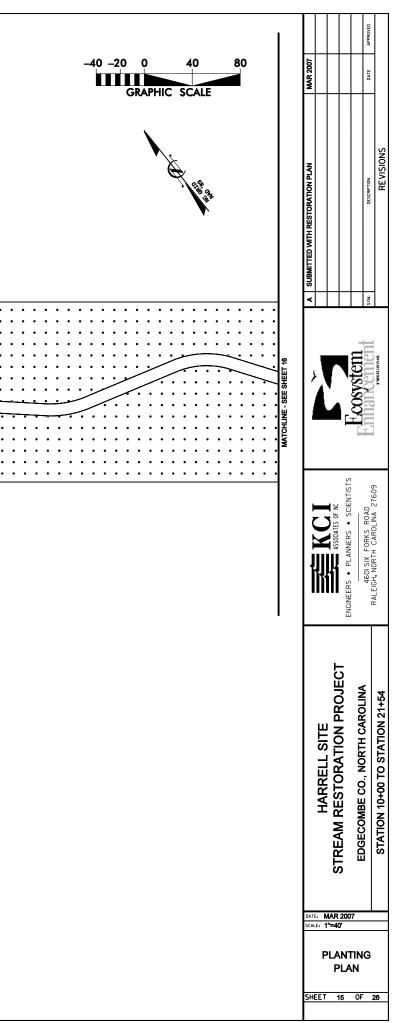
COMMON NAME

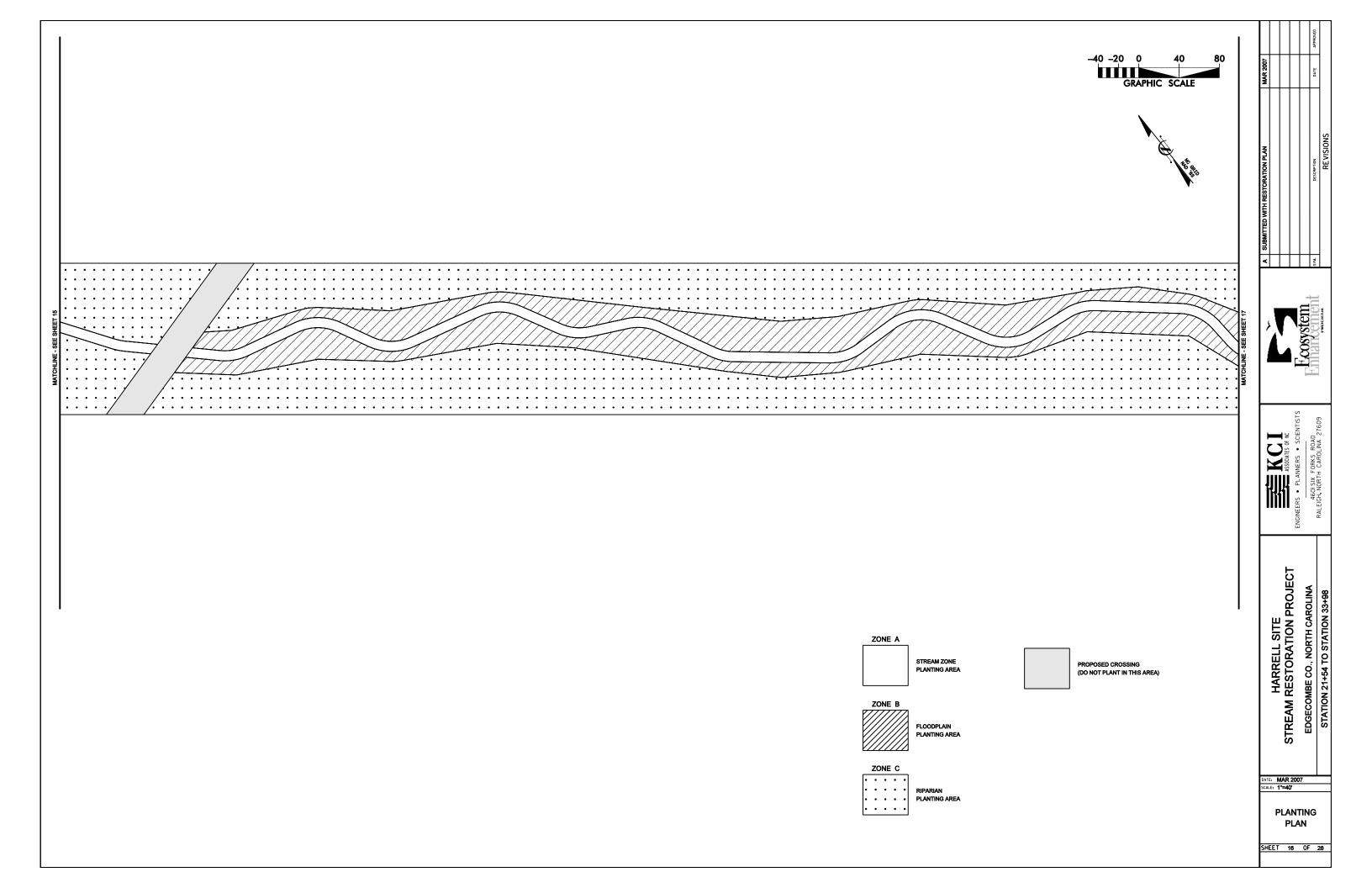
COMMON NAME	SCIENTIFIC NAME
BLACK WILLOW	SALIX NIGRA
SILKY WILLOW	SALIX SERICEA
SILKY DOGWOOD	CORNUS AMOMUM
ELDERBERRY	SAMBUCUS CANADENSIS

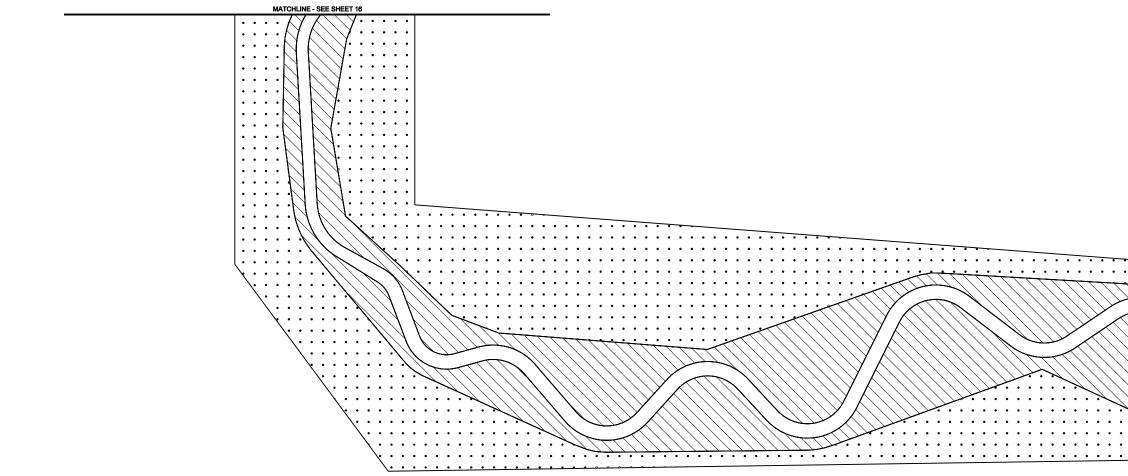
NOTE: NO SINGLE LIVE STAKING SPECIES SHALL COMPOSE MORE THAN 40% OF THE 7,360 TOTAL NUMBER OF LIVE STAKES TO BE INSTALLED

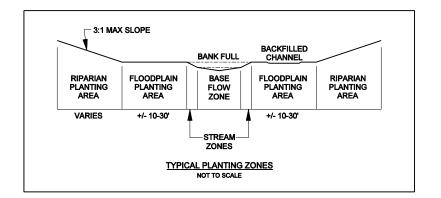
ZONE B FLOODPLAIN PLANTING AREA = 7.62 ACRES

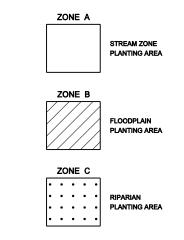
18" - 24" BARE ROOT MATERIAL 436 STEMS/ACRE (10' X 10' SPACING), RANDOM SPECIES PLACEMENT

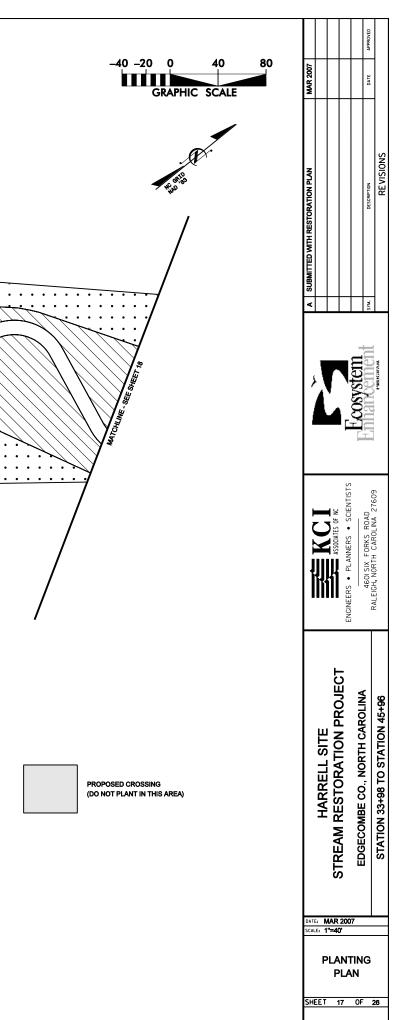

COMM

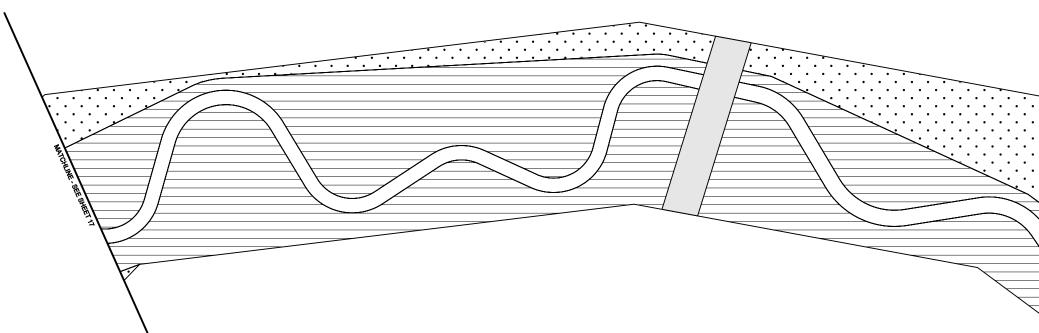

15	499
	400
15	499
A 5	116
10	333
10	333
10	333
15	499
10	333
10	333
	10 15

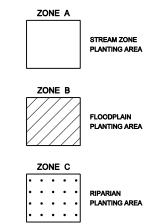

100 3328

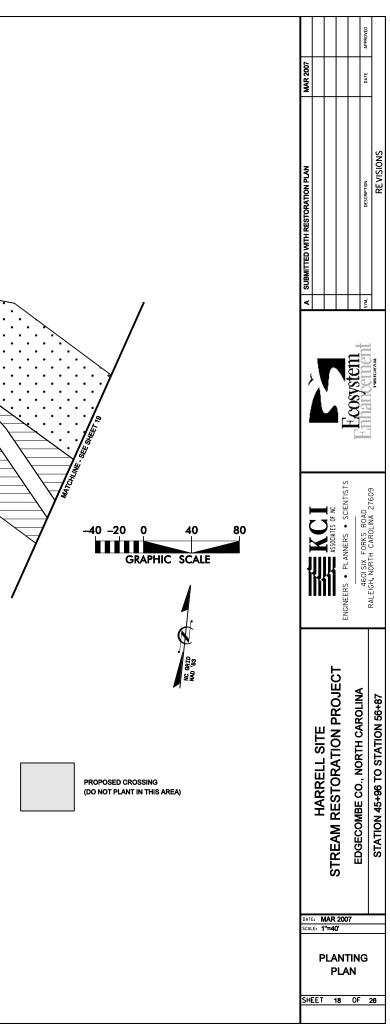

	ZC	NE	С					
•	•	•	•	•	RIPARIAN PLANTING AREA	A = 12.79 ACRES		
	•	•	•	•	18" - 24" BARE ROOT MATE			
	•	•	•	•	436 STEMS/ACRE (10' X 10'	' SPACING), RANDOM SPECIES PLAC	CEMENT	
ŀ	•	•	•	•	COMMON NAME	SCIENTIFIC NAME	% OF TOTAL	# OF PLANTS
					BEAUTYBERRY	CALLICARPA AMERICANA	5	279
					POSSUMHAW	VIBURNUM NUDUM	5	279
					PERSIMMON	PERSIMMON	25	1394
					BLACK WALNUT	BLACK WALNUT	20	1115
					SHAGBARK HICKORY	SHAGBARK HICKORY	20	1115
					S. RED OAK	S. RED OAK	25	1394
							100	5576

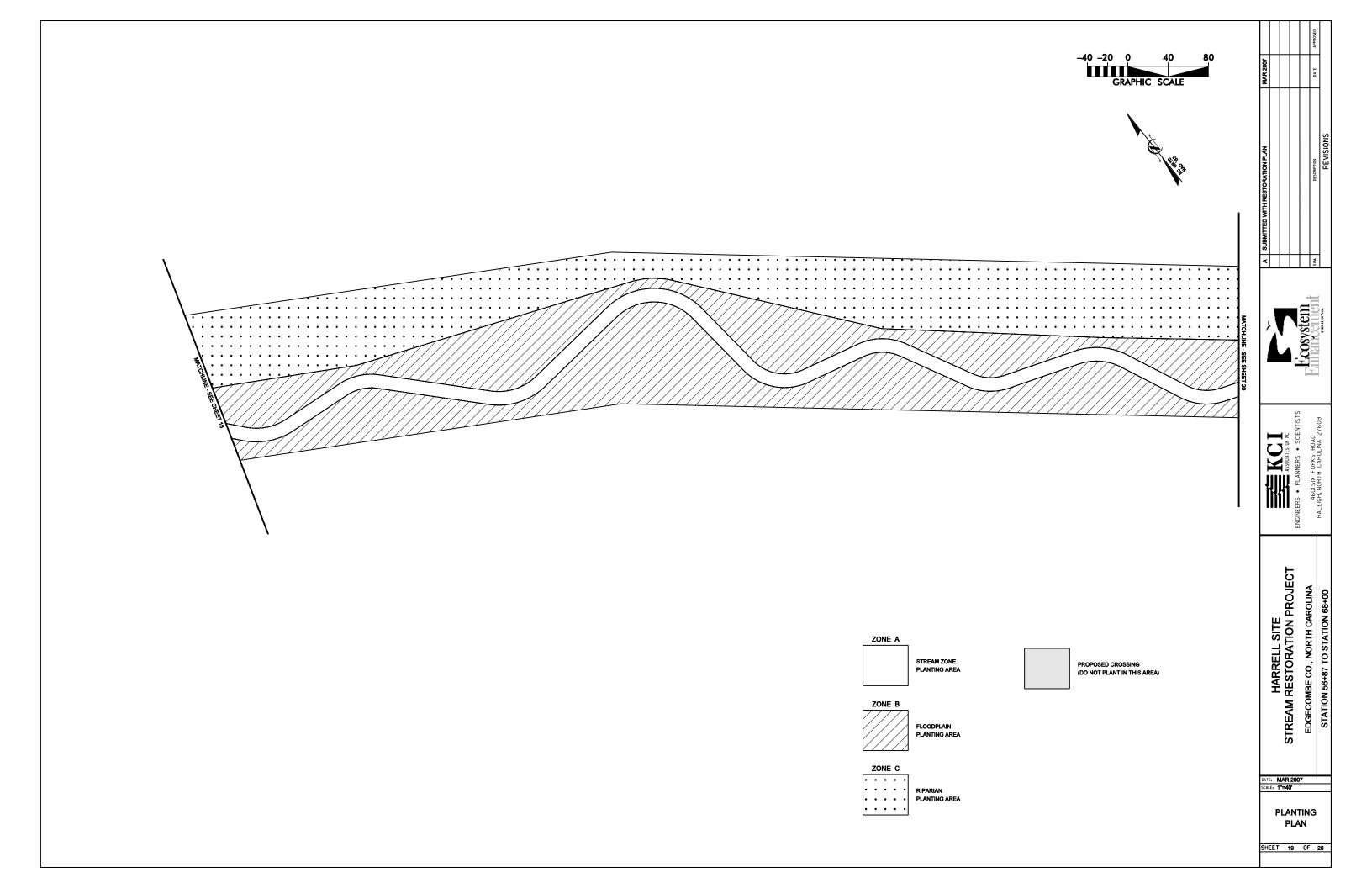

PROPOSED CROSSING (DO NOT PLANT IN THIS AREA)

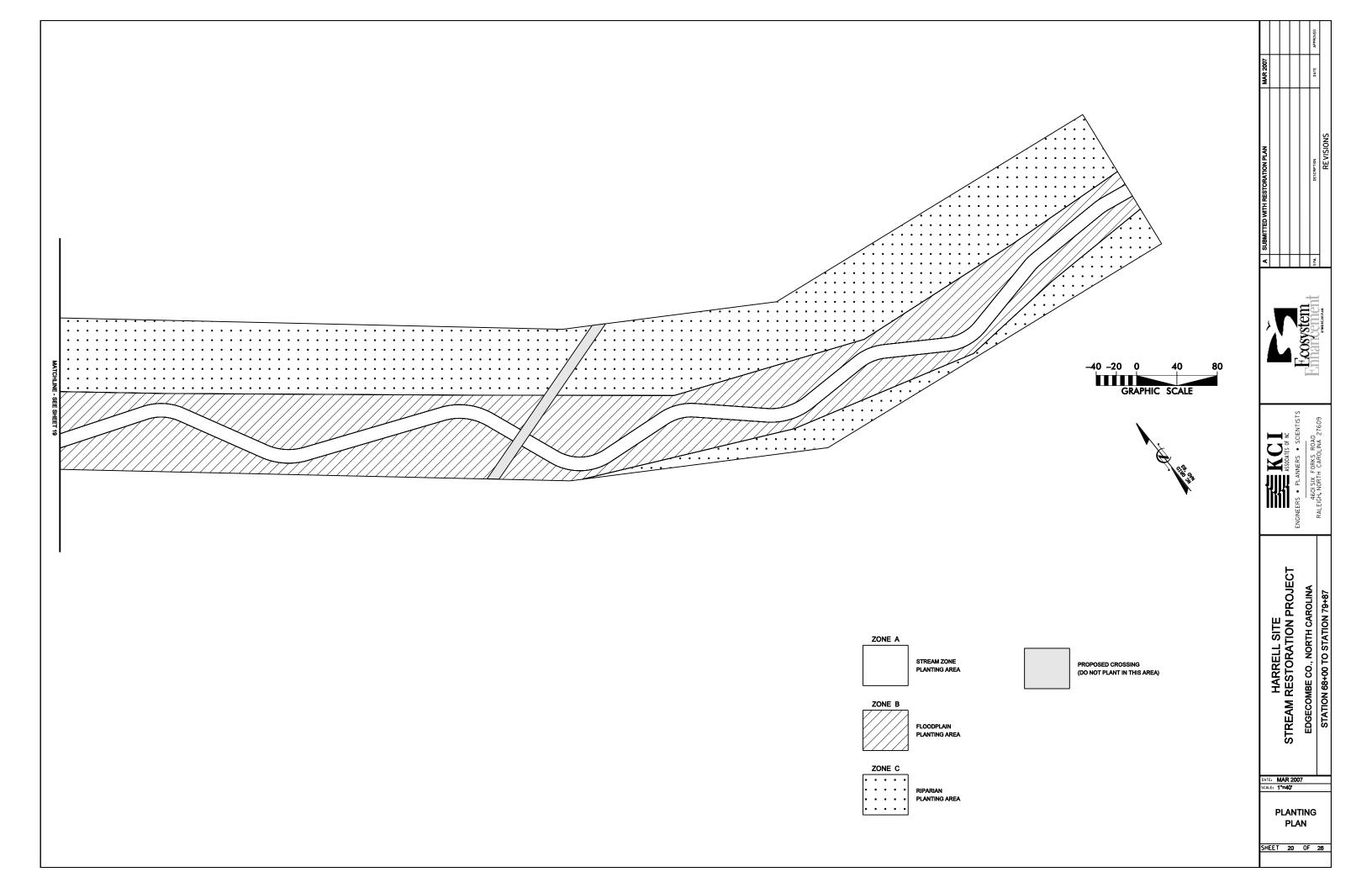


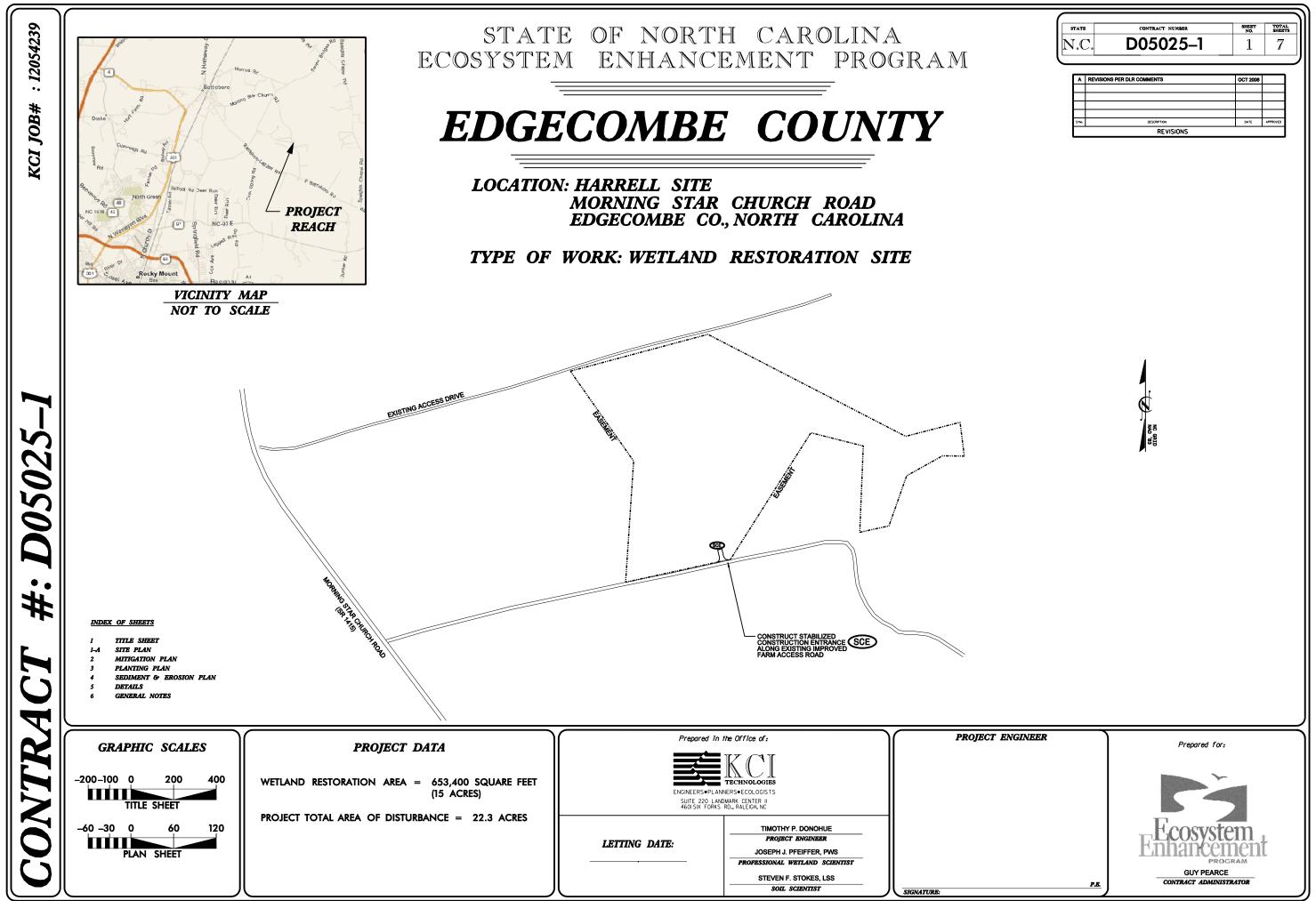


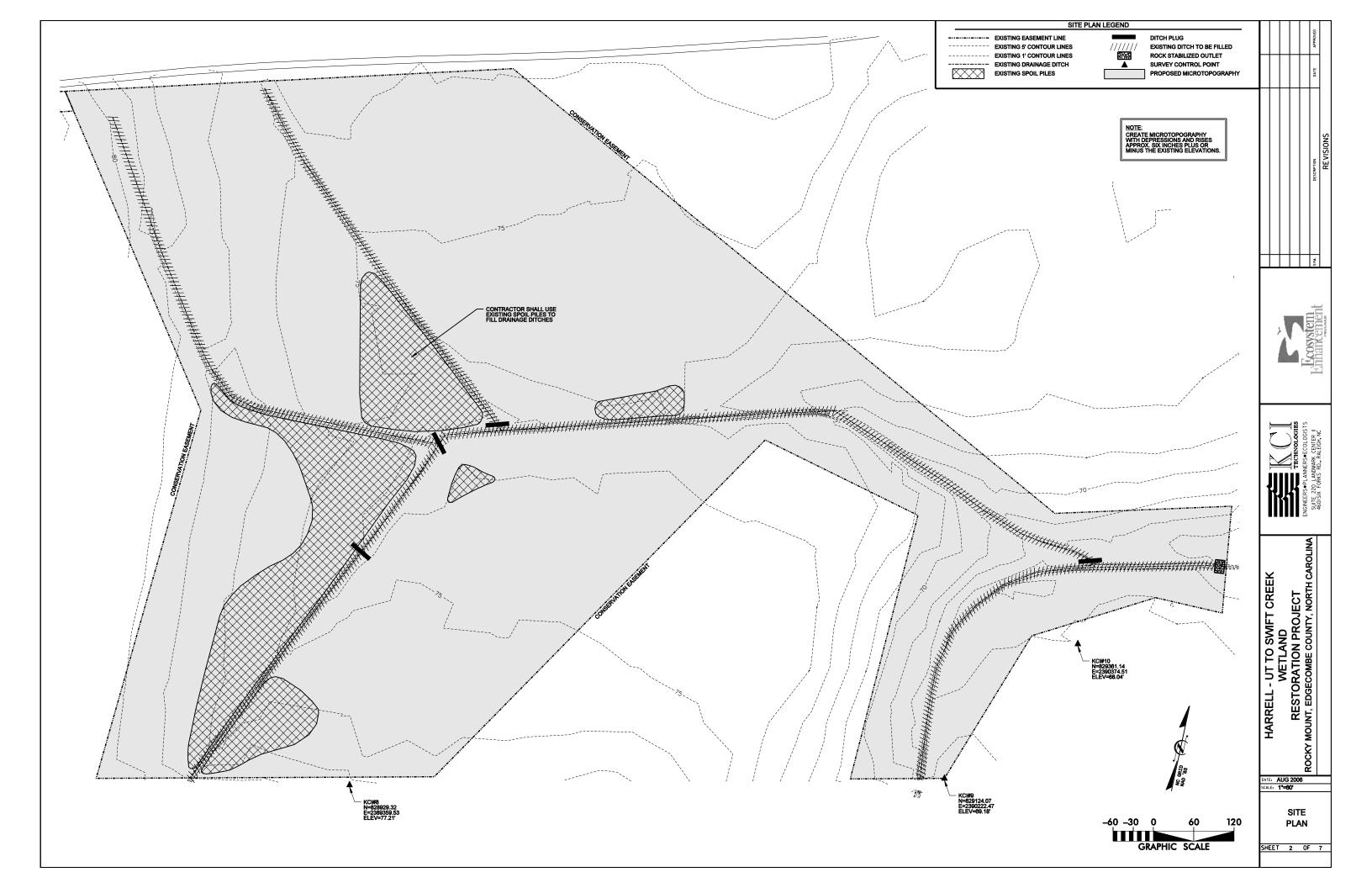


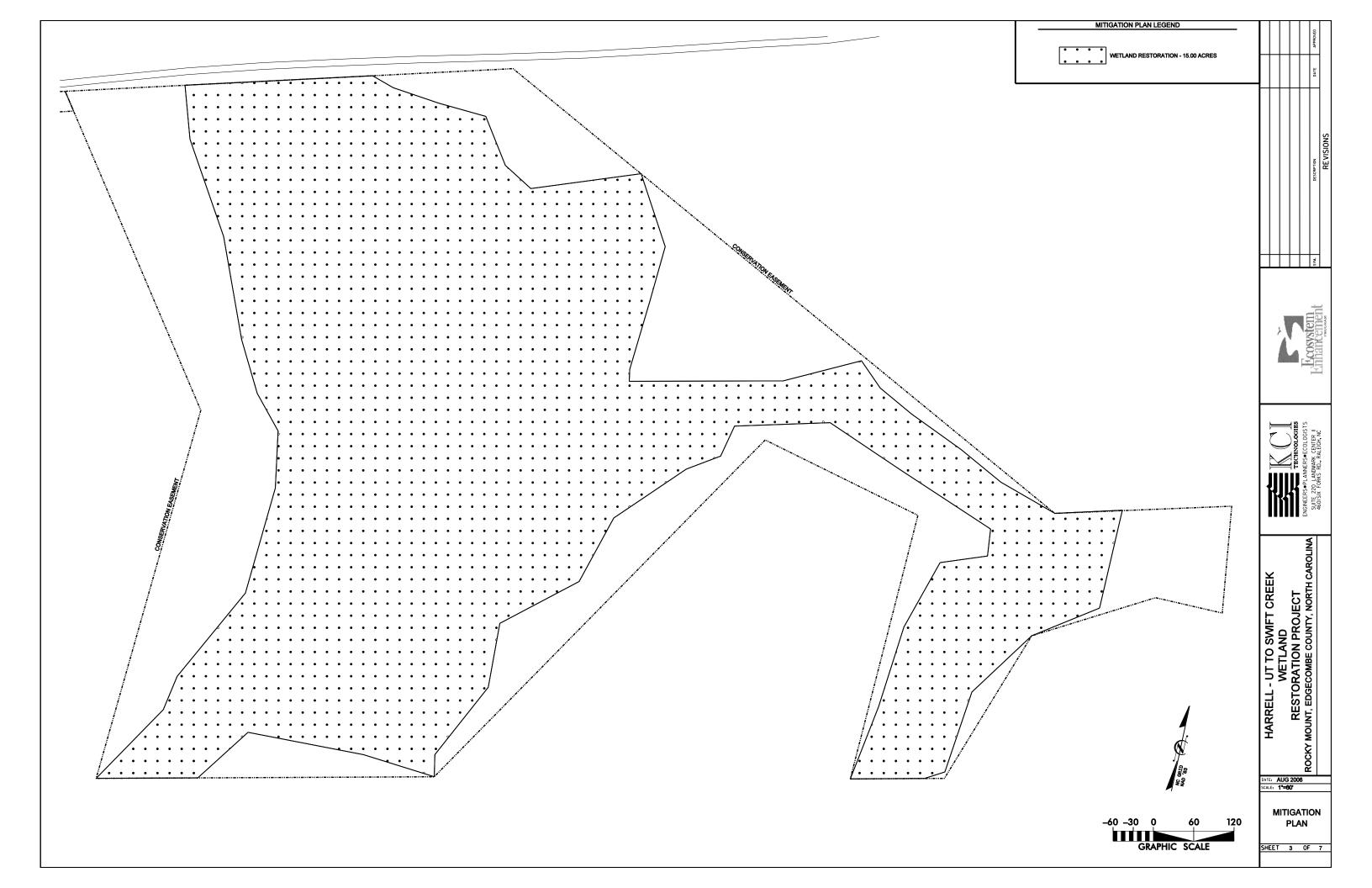


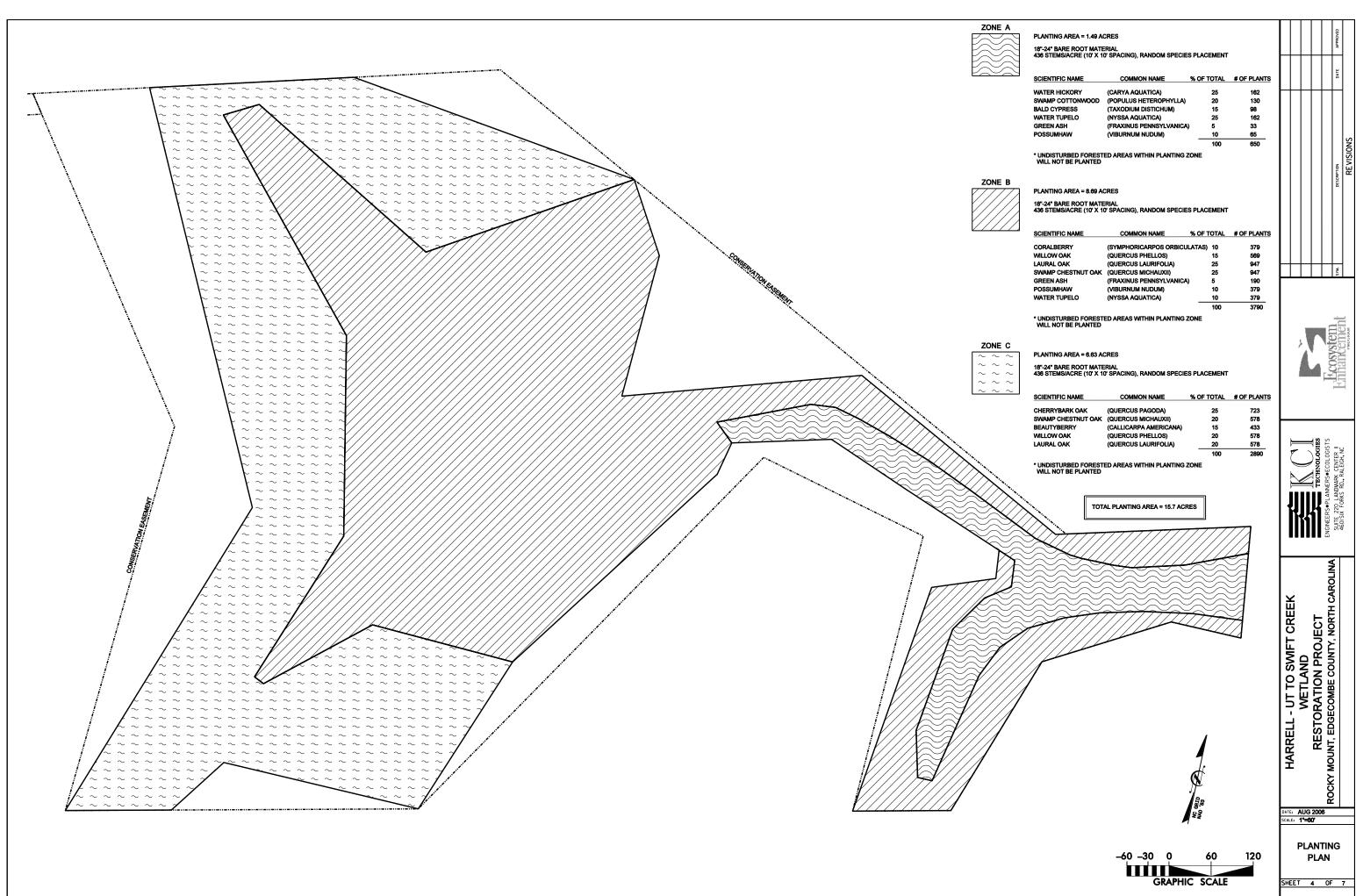




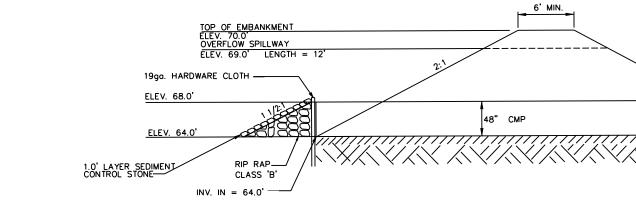


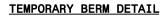



Wetland Plan Sheets



STAT	E CONTRACT NUMBER	SHEET NO.	TOT. SHEI
N.	C. D05025–1	1	7
_			
	REVISIONS PER DLR COMMENTS	OCT 2006	

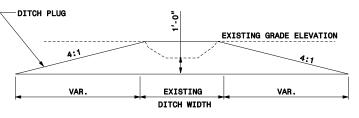



PLANTING AREA = 1.49 AC	RES
-------------------------	-----

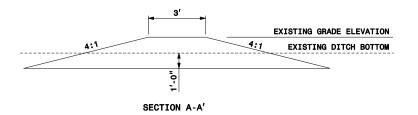
SCIENTIFIC NAME	COMMON NAME	% OF TOTAL	# OF PLANTS
WATER HICKORY	(CARYA AQUATICA)	25	162
SWAMP COTTONWOOD	(POPULUS HETEROPHYLLA)	20	130
BALD CYPRESS	(TAXODIUM DISTICHUM)	15	98
WATER TUPELO	(NYSSA AQUATICA)	25	162
GREEN ASH	(FRAXINUS PENNSYLVANICA) 5	33
POSSUMHAW	(VIBURNUM NUDUM)	10	65
		100	650

SCIENTIFIC NAME	COMMON NAME	% OF TOTAL	# OF PLANTS
CORALBERRY	(SYMPHORICARPOS ORBICU	LATAS) 10	379
WILLOW OAK	(QUERCUS PHELLOS)	15	569
LAURAL OAK	(QUERCUS LAURIFOLIA)	25	947
SWAMP CHESTNUT OAK	(QUERCUS MICHAUXII)	25	947
GREEN ASH	(FRAXINUS PENNSYLVANICA) 5	190
POSSUMHAW	(VIBURNUM NUDUM)	10	379
WATER TUPELO	(NYSSA AQUATICA)	10	379

SCIENTIFIC NAME	COMMON NAME	% OF TOTAL	# OF PLANTS
CHERRYBARK OAK	(QUERCUS PAGODA)	25	723
SWAMP CHESTNUT OAK	(QUERCUS MICHAUXII)	20	578
BEAUTYBERRY	(CALLICARPA AMERICANA)	15	433
WILLOW OAK	(QUERCUS PHELLOS)	20	578
LAURAL OAK	(QUERCUS LAURIFOLIA)	20	578
		100	2890

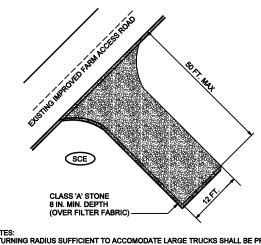

Α

DITCH PLUG


►B

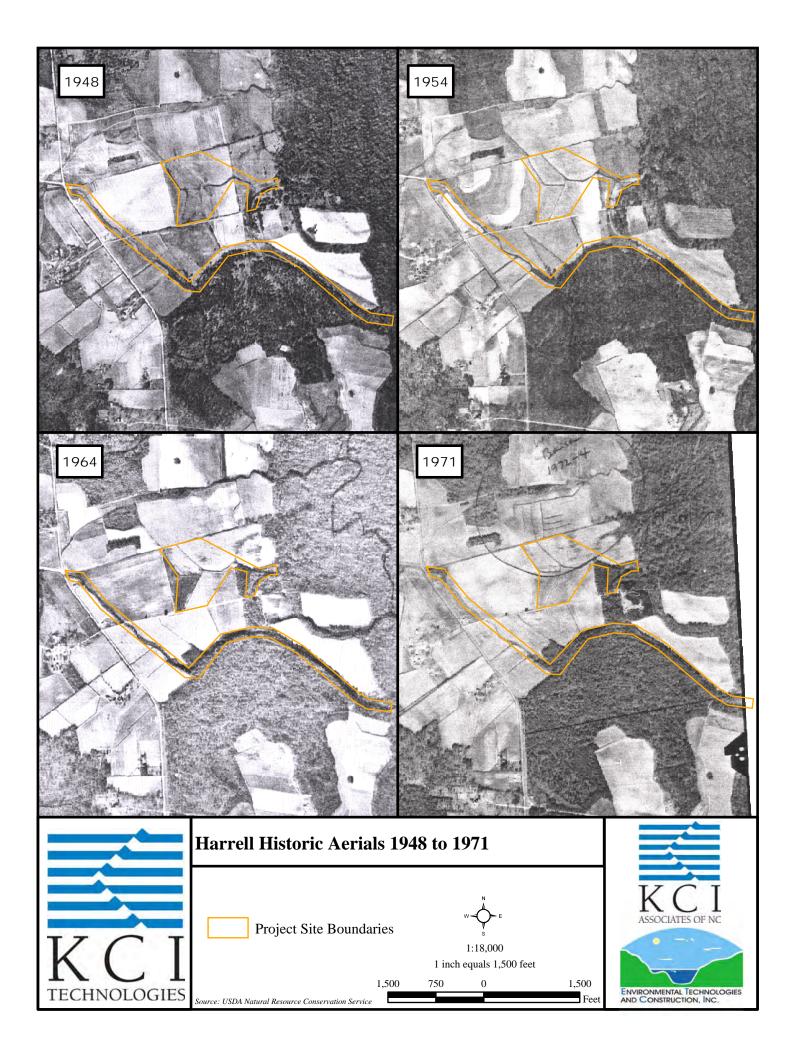
► B′

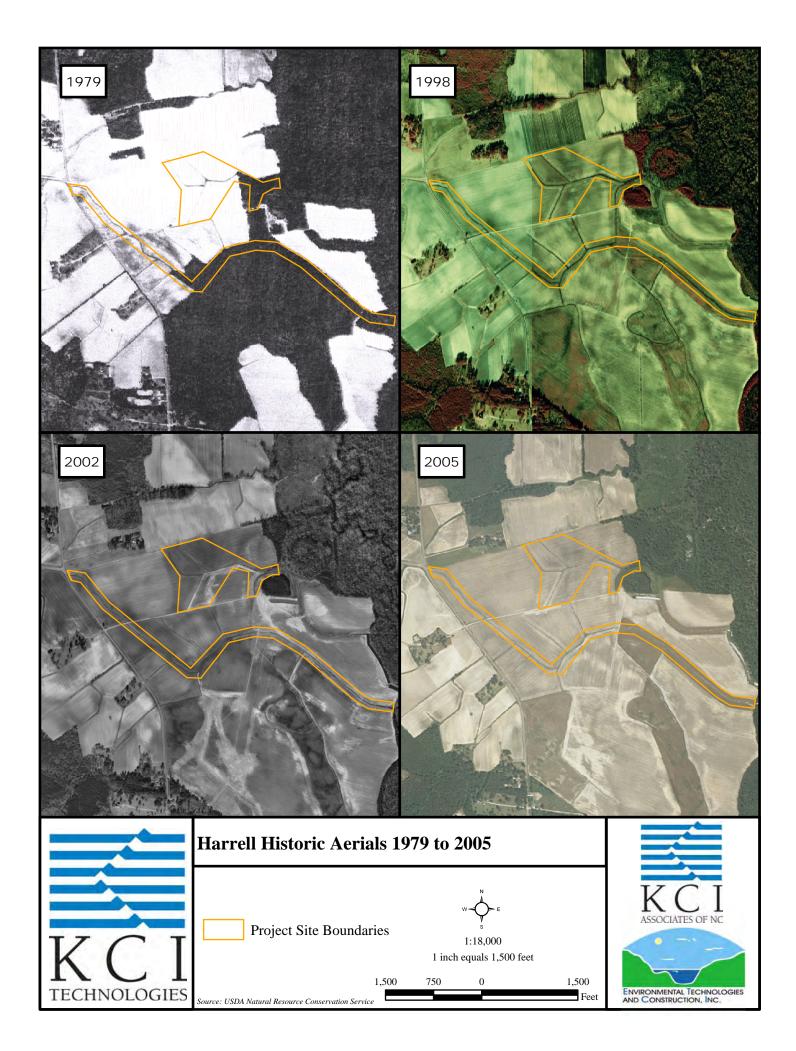
- EXISTING DITCH



DITCH PLUG DETAIL

NOTES: SEE PLAN SHEETS FOR LOCATIONS OF DITCH PLUGS. SEE PROJECT SPECIAL PROVISONS FOR MATERIAL SPECIFICATIONS.


- NOTES: 1. TURNING RADIUS SUFFICIENT TO ACCOMODATE LARGE TRUCKS SHALL BE PROVIDED. 2. ENTRANCE(S) SHOULD BE LOCATED TO PROVIDE FOR UTILIZATION BY ALL CONSTRUCTION VEHICLES. 3. MUST BE MAINTAINED IN A CONDITION WHICH WILL PREVENT TRACKING OR DIRECT FLOW OF MUD ONTO STREETS. PERIODIC TOPDRESSING WITH STONE WILL BE NECESSARY. 4. ANY MATERIAL TRACKED ONTO THE ROADWAY MUST BE CLEANED UP IMMEDIATELY. 5. GRAVEL CONSTRUCTION ENTRANCE SHALL BE LOCATED AT ALL POINTS OF INGRESS AND EGRESS UNTLING THE TRADILIZED. FREQUENT CHECKS OF THE DEVICE AND TIMELY MAINTENANCE MUST BE PROVIDED.



Appendix A. Historical Aerial Photographs

Appendix B. Correspondence

Engineers • Surveyors • Scientists • Construction Managers

LANDMARK CENTER II • SUITE 220 • 4601 SIX FORKS ROAD • RALEIGH • NC 27609 • 919-783-9214 • FAX 919-783-9266

July 5, 2005

Ms. Renee Gledhill-Earley Environmental Review Coordinator - SHPO 4617 Mail Service Center Raleigh, NC 27699-4617

Attn: Juliana Hoekstra

Subject: Cultural Resources Review Harrell Stream and Wetland Restoration Project Project Number 12054239

Dear Ms. Hoekstra:

Please accept this information pertaining to the proposed Harrell Stream and Wetland Restoration Project, which is located off of Morning Star Road approximately six miles northeast of Rocky Mount in Edgecombe County, as a submittal for cultural resources review by the State Historic Preservation Office.

A portion of this property (refer to attached layout) is currently under investigation as a stream and wetland restoration project for the North Carolina Ecosystem Enhancement Program. The current land use in the project area includes predominantly Agricultural Crop Fields Forest with small patches of Coastal Plain Oak Bottomland Forest according to the 2003 NC GAP land cover dataset. The restoration would improve water quality and provide greater protection for aquatic ecosystems from surrounding agricultural lands. This type of work typically involves enhancing streams to create more natural and stable channels through minor grading, use of in-stream rock features, reforestation of riparian buffers, and restoration of wetland hydrology. An old spoil berm will also be removed, which is currently a barrier to flooding. No impacts to structures on the subject property are anticipated.

Following the review of the included documentation, please provide a determination regarding any potential impacts to cultural resources associated with this project.

Please feel free to contact me at (919) 783-9214, ext. 141, should you have any questions or require any further information to process this request. Thank you in advance for your assistance and attention.

Sincerely,

Michael B. Schlegel Project Manager

KCI TECHNOLOGIES

North Carolina Department of Cultural Resources State Historic Preservation Office

Peter B. Sandbeck, Administrator

Michael F. Fasley, Governor Lisbeth C. Evans, Secretary Jeffrey J. Grow, Deputy Secretary

Office of Archives and History Division of Historical Resources David Brook, Director

July 18, 2005

Michael B. Schlegel KCI Technologies Landmark Center II, Suite 220 4601 Six Forks Road Raleigh, NC 27609

Re: Harrell Stream & Wetland Restoration, # 12054239, Edgecombe County, ER 05-1536

Dear Mr. Schlegel:

Thank you for your letter of July 5, 2005, concerning the above project.

We have conducted a review of the proposed undertaking and are aware of no historic resources which would be affected by the project. Therefore, we have no comment on the undertaking as proposed.

The above comments are made pursuant to Section 106 of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Regulations for Compliance with Section 106 codified at 36 CFR Part 800.

Thank you for your cooperation and consideration. If you have questions concerning the above comment, contact Renee Gledhill-Earley, environmental review coordinator, at 919/733-4763. In all future communication concerning this project, please cite the above referenced tracking number.

Sincerely,

Rence Gledhill - Earley

Reter Sandbeck

ADMINISTRATION RESTORATION SURVEY & PLANNING Location 507 N. Blount Street, Raleigh NC 515 N. Blount Street, Raleigh NC 515 N. Blount Street, Raleigh, NC Mailing Address

4617 Mail Service Center, Raleigh NC 27699-4617 4617 Mail Service Center, Raleigh NC 27699-4617 4617 Mail Service Center, Raleigh NC 27699-4617 Telephone/Fax (919)733-4763/733-8653 (919)733-6547/715-4801 (919)733-6545/715-4801

ENGINEERS . SURVEYORS . SCIENTISTS . CONSTRUCTION MANAGERS

LANDMARK CENTER II • SUITE 220 • 4601 SIX FORKS ROAD • RALEIGH • NC 27609 • 919-783-9214 • FAX 919-783-9266

July 5, 2005

Linda Pearsall, Program Head North Carolina Natural Heritage Program 1601 Mail Service Center Raleigh, NC 27529

Subject: Natural Heritage Review Harrell Stream and Wetland Restoration Project Project Number 12054239

Dear Ms. Pearsall:

Please accept this information pertaining to the proposed Harrell Stream and Wetland Restoration Project, which is located off of Morning Star Road approximately six miles northeast of Rocky Mount in Edgecombe County, as a submittal for natural communities and rare species review by the North Carolina Natural Heritage Program.

A portion of this property (refer to attached layout) is currently under investigation as a stream and wetland restoration project for the North Carolina Ecosystem Enhancement Program. The current land use in the project area includes predominantly Agricultural Crop Fields with small patches of Coastal Plain Oak Bottomland Forest according to the 2003 NC GAP land cover dataset. The restoration would improve water quality and provide greater protection for aquatic ecosystems from surrounding agricultural lands. This type of work typically involves enhancing streams to create more natural and stable channels through minor grading, use of in-stream rock features, reforestation of riparian buffers, and restoration of wetland hydrology. An old spoil berm will also be removed, which is currently a barrier to flooding. No impacts to structures on the subject property are anticipated.

Following the review of the included documentation, please provide a determination regarding any potential impacts to rare species or natural areas associated with this project.

Please feel free to contact me at (919) 783-9214, ext. 141, should you have any questions or require any further information to process this request. Thank you in advance for your assistance and attention.

Sincerely,

Michael B. Schlegel Project Manager

KCI TECHNOLOGIES

North Carolina Department of Environment and Natural Resources

Michael F. Easley, Governor

William G. Ross Jr., Secretary

July 11, 2005

Mr. Michael B. Schlegel KCI Technologies Landmark Center II, Suite 220 4601 Six Forks Road Raleigh, NC 27609

Subject: Harrell Stream and Wetland Restoration Project; Morning Star Road, Rocky Mount, Edgecombe County Project No. 12054239

Dear Mr. Schlegel:

The Natural Heritage Program has no record of rare species, significant natural communities, or priority natural areas at the site nor within a mile of the project area. Although our maps do not show records of such natural heritage elements in the project area, it does not necessarily mean that they are not present. It may simply mean that the area has not been surveyed. The use of Natural Heritage Program data should not be substituted for actual field surveys, particularly if the project area contains suitable habitat for rare species, significant natural communities, or priority natural areas.

You may wish to check the Natural Heritage Program database website at <<u>www.ncnhp.org></u> for a listing of rare plants and animals and significant natural communities in the county and on the topographic quad map. Please do not hesitate to contact me at 919-715-8697 if you have questions or need further information.

Sincerely,

Harry E. Lotral fr

Harry E. LeGrand, Jr., Zoologist Natural Heritage Program

HEL/hel

1601 Mail Service Center, Raleigh, North Carolina 27699-1601 Phone: 919-733-4984 • FAX: 919-715-3060 • Internet: <u>www.enr.state.nc.us</u> An Equal Opportunity • Affirmative Action Employer - 50 % Recycled • 10 % Post Consumer Paper

Engineers • Surveyors • Scientists • Construction Managers

LANDMARK CENTER II • SUITE 220 • 4601 SIX FORKS ROAD • RALEIGH • NC 27609 • 919-783-9214 • (FAX 919-783-9266

July 18, 2005

Mr. Gary Jordan US Fish and Wildlife Service Raleigh Field Office P.O. Box 33726 Raleigh, NC 27636

Subject: Endangered Species Act, Fish and Wildlife Coordination Act, Migratory Bird Treaty Act Harrell Stream and Wetland Restoration Project Project Number 12054239

Dear Mr. Jordan

Please accept this information pertaining to the proposed Harrell Stream and Wetland Restoration Project, which is located off of Morning Star Road approximately six miles northeast of Rocky Mount in Edgecombe County, as a submittal for review of the Endangered Species Act, Fish and Wildlife Coordination Act, and Migratory Bird Treaty Act by the US Fish and Wildlife Service.

A portion of this property (refer to attached layout) is currently under investigation as a stream and wetland restoration project for the North Carolina Ecosystem Enhancement Program. The current land use in the project area includes predominantly Agricultural Crop Fields with small patches of Coastal Plain Bottomland Forest. The restoration would improve water quality and provide greater protection for aquatic ecosystems from surrounding agricultural lands. This type of work typically involves enhancing streams to create more natural and stable channels through minor grading, use of in-stream rock features, reforestation of riparian buffers and bottomland forest, and restoration of wetland hydrology. An old spoil berm will also be removed, which is currently a barrier to flooding. As part of the environmental documentation process (Categorical Exclusion), coordination with the USFWS is requested for compliance with the Endangered Species Act, Fish and Wildlife Coordination Act, and Migratory Bird Treaty Act.

Following the review of the included documentation, please provide a determination of the potential effects to endangered species, wildlife, or migratory birds associated with this project.

Please feel free to contact me at (919) 783-9214, ext. 141, should you have any questions or require any further information to process this request. Thank you in advance for your assistance and attention.

Sincerely,

Michael B. Schlegel Project Manager

KCI TECHNOLOGIES

OF WATER O	North Caro	Michael F. Easley, Governor William G. Ross Jr., Secretary lina Department of Environment and Natural Resources
OF WATER OF MATER	·	Alan W. Klimek, P.E. Director Colleen H. Sullins, Deputy Director Division of Water Quality
	September 13, 200	5 22405471500 1 101 10 100 100 100 100
		shall he where die the field 2 utar
		TPBRRO#05-244
		County: Edgecombe
KCI Assoc. of NC Landmark Center II Suite 200 4601 Six Forks Road Raleigh, NC 27609	tute?	
Attn: Mr. Steven Stokes		
BASIN:		
Neuse River	Tar-Pamlico	X
(15A NCAC 2B .0233)	(15A NCAC	2 B .0259)
Complaint	NOV	Buffer Determination X
Incident #		Appeal Call
	tream & Wetland Restoration Site	
Location/Directions: located off	of Morning Star Rd approx. six mil	es NE of Rocky Mount

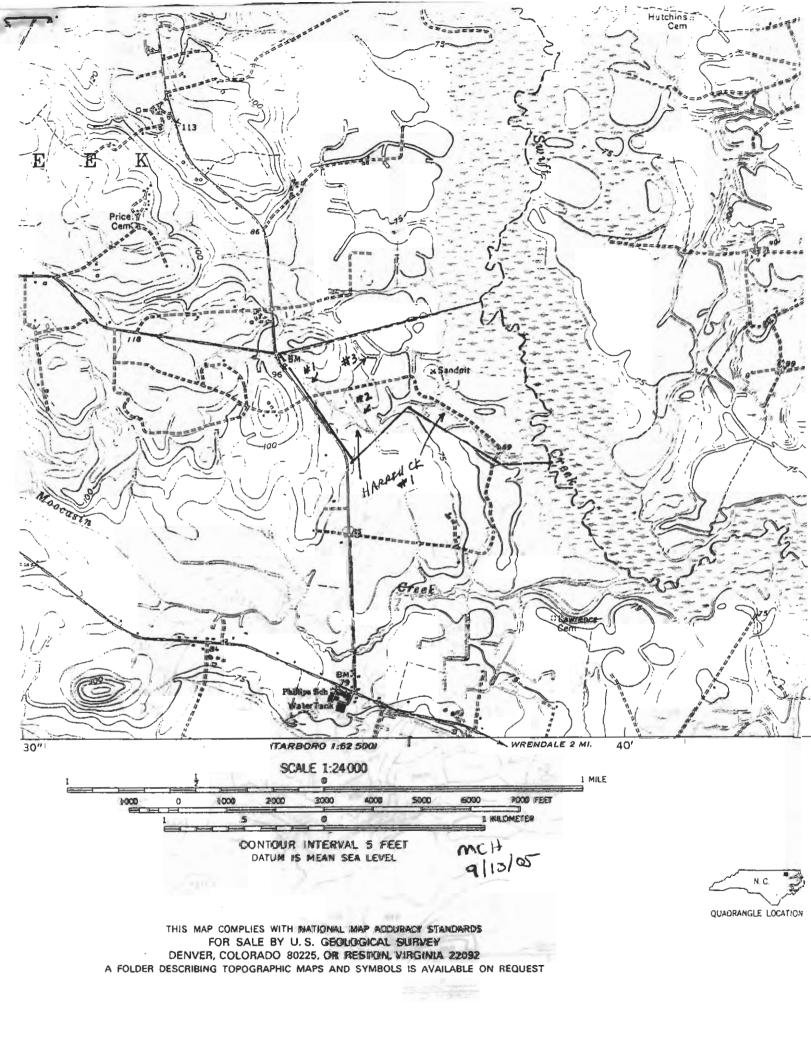
Subject Stream: UT to Swift Creek

Date of Determination: 7/27/05

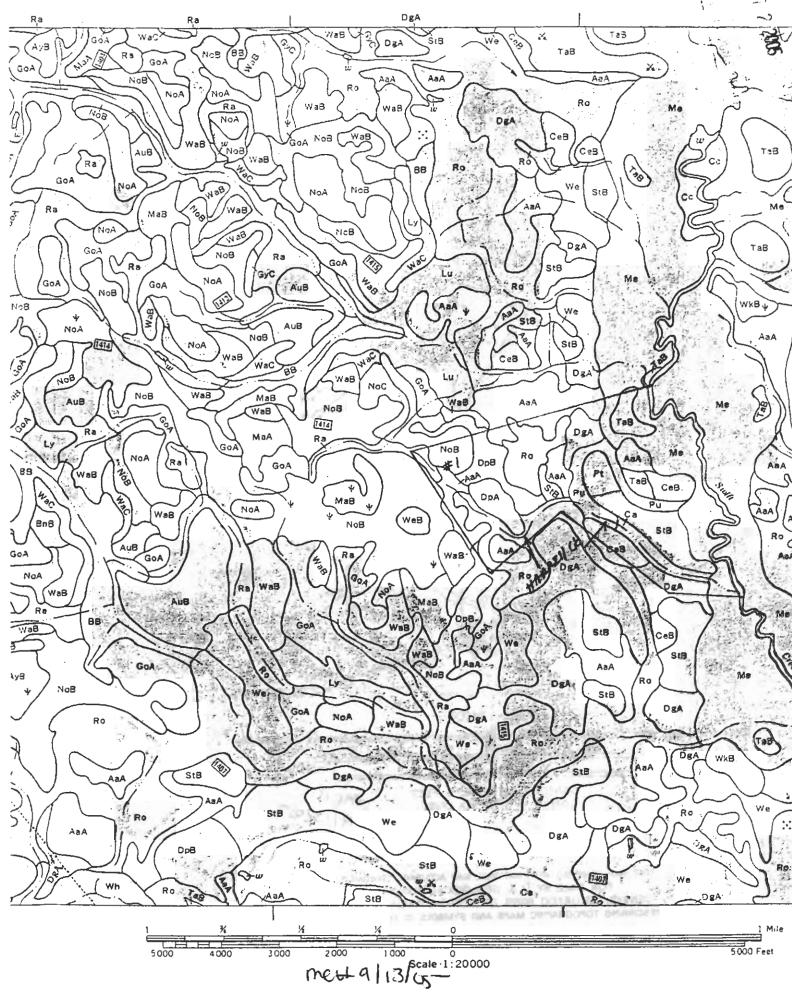
Feature	Start Buffer GPS Points (if provided)	End Buffer	Stream Form	Appeal Call	Located on Soil Survey	Located on USGS Topographic
1	Subject				X	X
2	Not Subject					X
3	Not Subject					X

1628 Mail Service Center Raleigh, NC 27699-1628

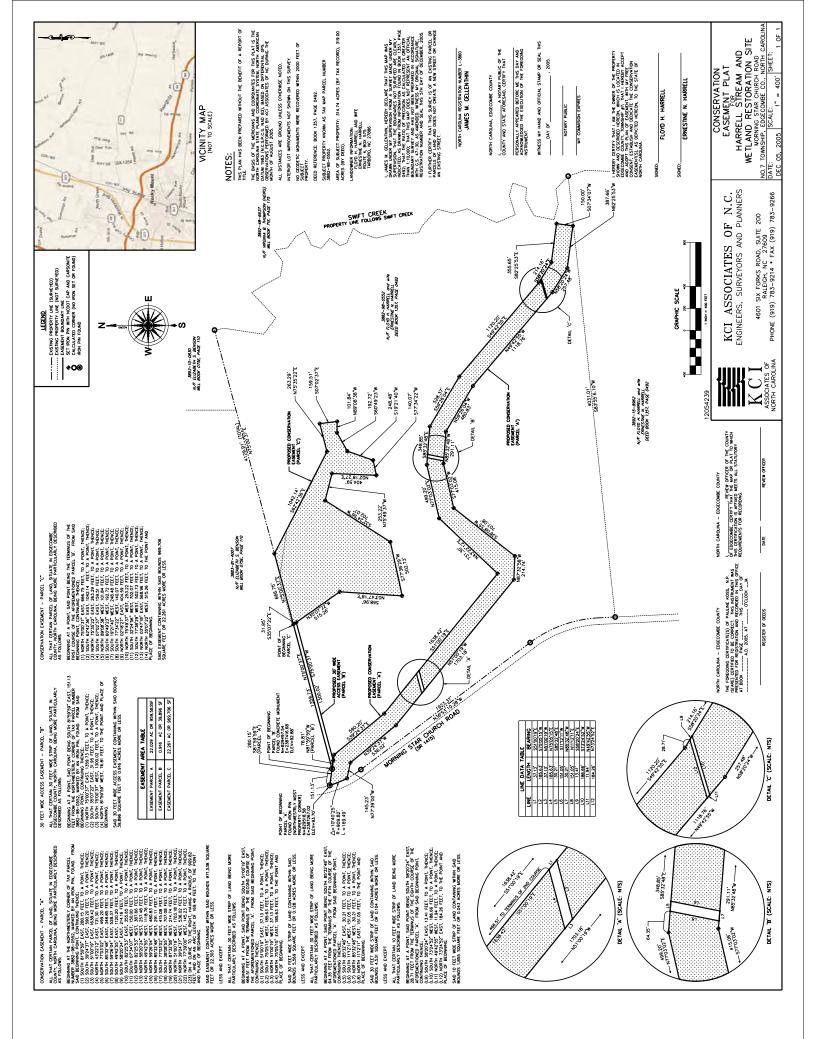
This on-site determination shall expire five (5) years from the date of this letter. Landowners or affected parties that dispute a determination made by the DWQ or Delegated Local Authority that a surface water exists and that it is subject to the buffer rule may request a determination by the Director. A request for a determination by the Director shall be referred to the Director in writing c/o Cyndi Karoly, DWQ Wetlands/401 Unit, 2321 Crabtree Blvd., Raleigh, NC 27604-2260. Individuals that dispute a determination by the DWQ or Delegated Local Authority that "exempts" a surface water from the buffer rule may ask for an ad judicatory hearing. You must act within 60 days of the date that you receive this letter. Applicants are hereby notified that the 60-day statutory appeal time does not start until the affected party (including downstream and adjacent landowners) is notified of this decision. DWQ recommends that the applicant conduct this notification in order to be certain that third party appeals are made in a timely manner. To ask for a hearing, send a written petition, which conforms to Chapter 150B of the North Carolina General Statutes to the Office of Administrative Hearings, 6714 Mail Service Center, Raleigh, N.C. 27699-6714. This determination is final and binding unless you ask for a hearing within 60 days.


The (owner/future owners) should notify the Division of Water Quality (including any other Local, State, and Federal Agencies) of this decision concerning any future correspondences regarding the subject property (stated above). This project may require a Section 404/401 Permit for the proposed activity. Any inquiries should be directed to the Division of Water Quality (Central Office) at (919)-733-1786, and the US Army Corp of Engineers (Raleigh Regulatory Field Office) at (919)-876-8441.

Respectfully,


Michael Horan Environmental Spec. I

CC: Jean Maneule, US Army Corps of Engineers, Raleigh Regulatory Office Debbie Edwards-Wetlands/ Stormwater Branch, 2321 Crabtree Blvd, Suite 250, Raleigh, NC 27604 File Copy Central Files


> trainin ridn^y tor doe

Appendix C. Conservation Easement

Appendix D. Project Site Photographs

STREAM SITE PHOTOGRAPHS

Beginning of the project stream as it leaves the culvert and enters the Harrell Property.

A view downstream from the first road crossing; gauge 1 is seen on the left.

Looking upstream toward the first road crossing on the project stream.

Looking downstream with agricultural fields bordering both sides of the stream.

Eroding banks along the project stream.

Looking upstream from the second road crossing.

STREAM SITE PHOTOGRAPHS

A view downstream from the second road crossing with gauge 2 on the left.

Exposed banks along the project stream.

A look upstream along the lower portion of the project stream.

Another view upstream along the lower portion of the project stream.

Looking upstream from the end of the project stream.

The downstream limit of the project stream where it enters a forested section before draining into Swift Creek.

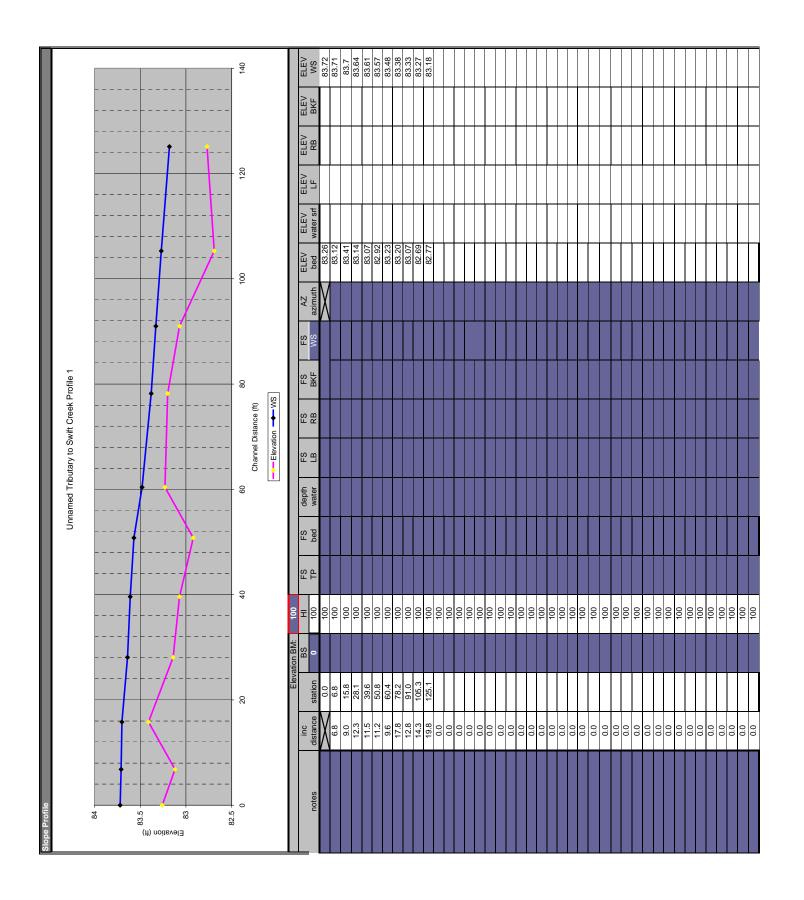
WETLAND SITE PHOTOGRAPHS

An overview of the wetland site looking toward the southeast.

The entire wetland site is under agricultural production.

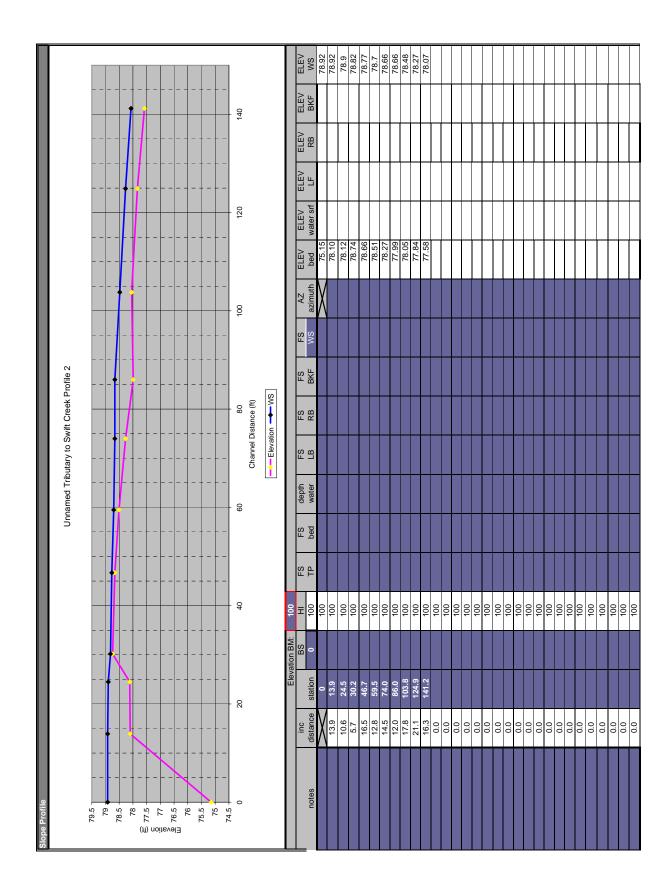
Looking upstream of the ditch that drains the southern portion of the wetland site.

A look at the wetland site (to the left) from the upper northern boundary.


A look at the confluence of three ditches that currently drain the wetland site.

Looking north-northeast over the site from the main ditch.

Appendix E. Existing Conditions Data


No Photo Es	20 60
85.2 5.4 87.2 >70 5.4 87.2 >70 2.0 1.3 4.1 1.3 1.3.0 1.3 24 24 54 87.2 >70 20 1.3 20 24 24 54 87.2 >70 54 87.2 >70 54 87.2 >70 54 87.2 >70 54 87.2 >70 54 87.2 >70 54 87.2 >70 54 87.2 >70 54 87.2 >70 54 87.2 >70 1.3 54 87.2 >70 20 1.3 54 87.2 >70 20 1.3 54 87.2 >70 20 1.3 54 87.2 >70 20 20 20 20 20 20 20 20 20 20 20 20 20	30 40 Station (feet)
Pamlico SC SC I I I I I I I I 2006 nch, Hayes, Helms, Patterson Bankfull Elevation: Bankfull Width: Flood Prone Width: Flood Prone Width: Max Depth at Bankfull: Max Depth at Bankfull: Mean Depth at Bankfull: W / D Ratio: Bank Height Ratio: Slope (tVt): Discharge (cfs)	82 0 10 20
River Basin: Tar Watershed: UT Watershed: Watershed: Watershed: Watershed: XS ID XS Drainage Area (sq mi): 0.2 Date: Ap Date: Ap Field Crew: Ap Station B7.03 0 B7.03 30 B6.84 30.1 B7.08 31.3 B5.47 32.3 B5.47 34.9 B6.84 37.3 B5.47 41.8 B5.47 42.5 B6.70 44.5 B7.03 55 B7.07 70 B7.15	

Riffle Pebble Count				Riffle Pebble Count,	ole Count,						
Material	Size Range (mm)	Count		Harrell-UT	Harrell-UTSC-Pebble Count 1	unt 1					
silt/clay	0 0.062	100	#	Tar Pamlico	õ						
very fine sand	0.062		#								
fine sand	0.13 0.25		#	Note: XS 1							
medium sand	0.25 0.5		#								
coarse sand	0.5 1		#		Riffle Pebt	ile Count, H	Riffle Pebble Count, Harrell-UTSC-Pebble Count 1	ebble Count 1			
very coarse sand	1 2		#								
very fine gravel	2 4		# 100%								120
fine gravel	4 6		/000								
fine gravel	6 8		a0.0e								0
medium gravel	8 11		# 80%				· - ·				001
medium gravel	11 16										
coarse gravel	16 22		up #		 	 	 			+ - + - + - + - + - + -	nun 8
coarse gravel	22 32		+ 100%								nbe
very coarse gravel	32 45										
very coarse gravel	45 64		#								f pi
small cobble	64		# CGI 40%								arti
medium cobble	06										04 cle
large cobble	128		30%								s
very large cobble	180		# 20%								
small boulder	256 362		#								20
small boulder			10%								
medium boulder											c
large boulder	1024 2048		- <u>~</u>		- •		- 1	100	1000		
very large boulder	2048 4096		+	-	-		2	- L			,
	total particle count:	100			particle size (mm)	mm)		-∎- cun	- cumulative %	 # of particles 	cles
bedrock			based on		size perce	size percent less than (mm	(mm)		partic	particle size distribution	ibution
clay hardpan			sediment	D16	D35	D50		D84 D95		gradation geo mean	std dev
detritus/wood			particles only	0.062	0.06	0.1		0 0	1.0	0.1	1.0
artificial			based on		percent t	trate					
	total count:	100	total count	silt/clay	sand		е	er be	ha	Ň	artificial
				100%	%0	0%	0 %0	0% 0%	%0	%0	0%

Pebble Count of Channel Reach	iel Reach					Pebb	Pebble Count,								
Material Si	Size Range (mm)	(mm) e	Count			Harre	Harrell-UTSC-Reach	ach 1							
silt/clay	0	0.062	79	##		Tar P	Tar Pamlico								
very fine sand	0.062	0.13	14	##											
fine sand	0.13	0.25	9	##		Note: XS 1									
medium sand	0.25	0.5	-	##											
coarse sand	0.5	Ļ		##				Pebble	Pebble Count, H	larrell-U1	Harrell-UTSC-Reach	h 1			00
very coarse sand	-	2		##	100% -						₩ - ₩ - ₩ -				1 90
very fine gravel	2	4		##	- %Ub	· ·									00
fine gravel	4	9		##											00
fine gravel	9	∞		##	80%										20
medium gravel	œ	11					= =			= =					
medium gravel	11	16		4+ ##	% <u>?</u>										nui 09
coarse gravel	16	22			ہ 60% ق										
coarse gravel	22	32			iit t					= =					er 0 0 <u>6</u>
very coarse gravel	32	45		##	20% 20%										
very coarse gravel	45	64		##	1000										oar 9
small cobble	64	06		3 ##											
medium cobble	06	128		##	30% -										es Do
large cobble	128	180		##			= =			= =					1 20
very large cobble	180	256		##	- %02										Ì
small boulder	256	362		##	10%										+ 10
small boulder	362	512		##						= =					
medium boulder	512	1024		##	- %0					1111		-			0+
	1024	2048		##	O	0.01	0.1	-		10		100	1000	10	10000
very large boulder	2048	4096		##					partic	particle size (mm)			;	•	[.
tc	total particle count:	le count:	100									-∎ cumulative %	ative %	# of particles	cles
bedrock				based on	d on		size	percent	size percent less than (mm	(mm)			partic	particle size distribution	tribution
clay hardpan				sediment	nent	Ò	D16 D35		D50 I	D65	D84	D95	gradation	geo mean	n std dev
detritus/wood				partic	particles only	0.062	62 0.06		0.1	0	0	0	1.1	0.1	1.1
artificial				based on	d on		ber	cent by s	percent by substrate type	type					
	tot	total count:	100	total	total count	silt/clay		nd gra	gravel co	cobble	boulder	bedrock	hardpan	wood/det	t artificial
						%62	% 21%		%0	0%0	%0	%0	%0	70V	%U

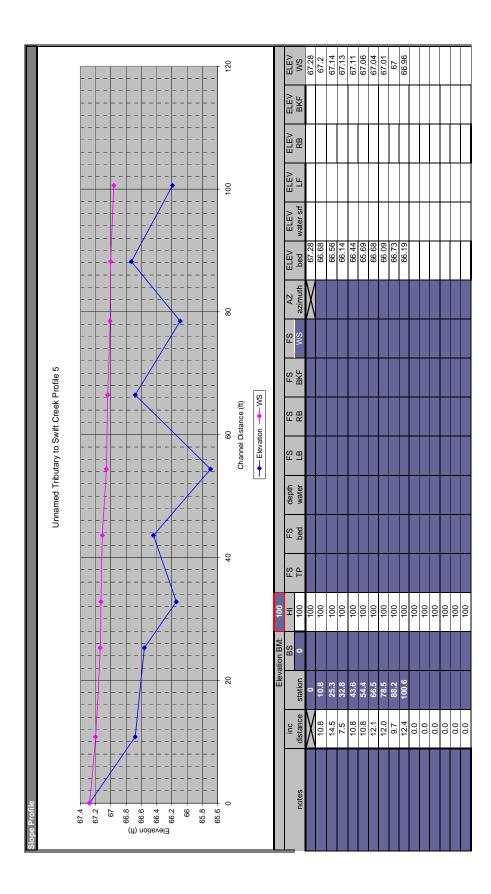
Image: set of the set of	30 40 50 60 70 Station (feet)
A A A A A A A A A A A A A A	10
Tar-Pamlico UTSC UTSC XS 2 KS 2 KS 2 KS 2 April 2006 April 2006 Hayes, Helms, Patterson Bankfull Elevation: SUMMARY DATA Bankfull Cross-Sectional At Bankfull Cross-Sectional At Bankfull Cross-Sectional At Bankfull Cross-Sectional At Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Bank Height Ratio: Bank Height Ratio: Bank Height Ratio: Bankfull: Max Depth at Bankfull: Max Depth at Bankfull: Bankfull: Discharge (cfs) Max Depth at Bankfull: Bank Height Ratio: <th>0</th>	0
River Basin: Watershed: XS ID Drainage Area (sq mj) Date: Date: Field Crew: Station Elevatio 0 80.85 10 80.55 20 80.77 30 80.87 34 81.02 35 80.93 36.5 80.033 36.5 80.033 37.1 79.01 35.5 80.055 36.5 80.056 37.1 78.62 37.1 78.63 41.8 79.05 42.7 79.05 43.4 81.15 44 81.15 50 80.56 60 80.56 60 80.56 60 80.56 65 80.94 70.5 80.94	

											80		nun 2 	nbe			erti							1000 10000		 – cumulative % • # of particles 	particle size distribution	gradation geo mean std dev	1.0 0.1 1.0		
						SC-Pebble Count 2																		100				D84 D95	0 0		
	unt 2					Riffle Pebble Count, Harrell-UTSC-Pebble Count 2	·																	10		(mm)	s than	D50 D65	0.1 0	percent by substrate type	
Riffle Pebble Count,	Harrell-UTSC-Pebble Count 2	Tar Pamlico		5		Riffle Pebbi																		0.1		particle size (mm)	size percer	D16 D35	0.062 0.06	bercent b	
Riffle	Нагг	# Tar	#	# Note: XS 2	#	#	#	100%	#	 	*		# g 95%	# 	# 9ni	# 1 1n 	190.	# 60%			#		#	0.01	#		based on		particles only 0.		
	Count	88	12																							100					
	Size Range (mm)	0 0.062	0.062 0.13	0.13 0.25	0.25 0.5	0.5 1	1 2	2 4	4 6		8 11	11 16		22 32	32 45									1024 2048	2048 4096	total particle count:					
Riffle Pebble Count	Material	silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	very large boulder		bedrock	clay hardpan	detritus/wood	artificial	

											าเห	nbe	er d	of r	art	ich	20									uc	std dev	1.0		artificial	/00
						100	06	2	80			8		20 02	40		900 800	0	07	10	2	0	8		cles	ributio		~			
					ļ																		10000		# of particles	particle size distribution	geo mean	0.1		wood/det	
																							1000		ve %	particle	gradation	1.0		hardpan	
					2										· _ ·							-	0		■— cumulative %		D95	0		bedrock	
					Harrell-UTSC-Reach 2																		100	(mm			D84	0		boulder	
					Harrell-U																		10	narticle size (mm)		an (mm)	D65	0	te type	cobble	
					Pebble Count,																		-		2	size percent less than (mm	D50	0.1	percent by substrate type	gravel	
III, Doach S					Pel																					size perce	D35	0.06	percent	sand	
Pepple Count, Harroll I ITSC - Daach 2	Tar Pamlico		(S 2		I													= =	-				0.1				D16	0.062		silt/clay	
	- 11		Note: XS 2											+ -								-	10								
						100%				ue	цţ л	ıəu		er 95% -) ƏL	d						- %06	0.01			based on	sediment	particles only	based on	total count	
L	##	##	##	##	##	##	##	##	##	##	##	##	##	##	##	##	##	##	##	##	##	##	##	##		ba	sē	ра	ba	tot	
		7			F					F	F			F	F	F		F	F	F	T.	F	14		100					100	
	~ ~	0.13	0.25	0.5	1	2	4	9	8	11	16	22	32	45	64	90	128	180	256	362	512	1024	2048	4096						total count: 1	
el Reacti		0.062 (0.13 (0.25	0.5	1	2	4	9	8	11	16	22	32			06				362			2048 4	total particle count:					total	
nar	silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	very large boulder	to	bedrock	clay hardpan	detritus/wood	artificial		

River Basin:	n:	Tar-Pamlico				
Waterched.		ITTEC				
AVAIGI SIIGI		0130				
XS ID		XS 3				
Drainage A	Drainade Area (so mi):	0.23				-
	·/			and the second se	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER	
Date:		April 2006				1
Field Crew:		Hayes, Helms, Patterson		「「「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」		10 18 C
						and a second
Station	Elevation	SUMMARY DATA				
C	78.86	Bankfull Flevation:	76.4		「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	1 Sector
	20.07				「「「「「「「「「」」」	
0	10.91	DAIIKIUII UPOSS-Sectional Area:	C:/			
25	78.84	Bankfull Width:	5.7	Contraction of the second seco		
30	78.71	Flood Prone Area Elevation:	78.3	3 日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日		0
32	78 40	Flood Prone Width.	29~		をいたいとうないないで、ノート	
00 10	27.70	Mar Darth at Barl-full.				THE
33.0	11.19	Max Depun at Bankrull:	1.9	いていたいできたいというできたであったかのです		1 A
34	77.15	Mean Depth at Bankfull:	1.3	3	tora a second	
35	75.63	W / D Ratio:	4.3	3 Contraction of the second se		T.
36	75.02	Entrenchment Ratio	11.4			度い
00	74 74					57
37	/4.51	Bank Height Ratio:	1.8			12
38.5	74.41	Slope (ft/ft):	0.007	07		- TV -
30	74 45	Discharoe (cfs)	31	Stream Type: F5	ſ	
		(era) agrinaera	10	ou cum type.		
39.5	75.60					
40.5	76.63					
42	77.72		Та	Tar-Pamlico River Basin, UTSC, XS 3		
77	77 05					
1	11.30					
47	77.95	87 .				[
53	77.89				Bankfull	
en en	77 87				•	
00	10.11				E Flood Prone Area	rea
60	10.00	BO F]
		- əə.	•			
				/		
		78 +				
		۱ <i>ә</i> լ				
				/ / / /		
		1 9/				
		74	-		-	
		- 0	00	30 40	50 60	20
			24			2
				Station (feet)		

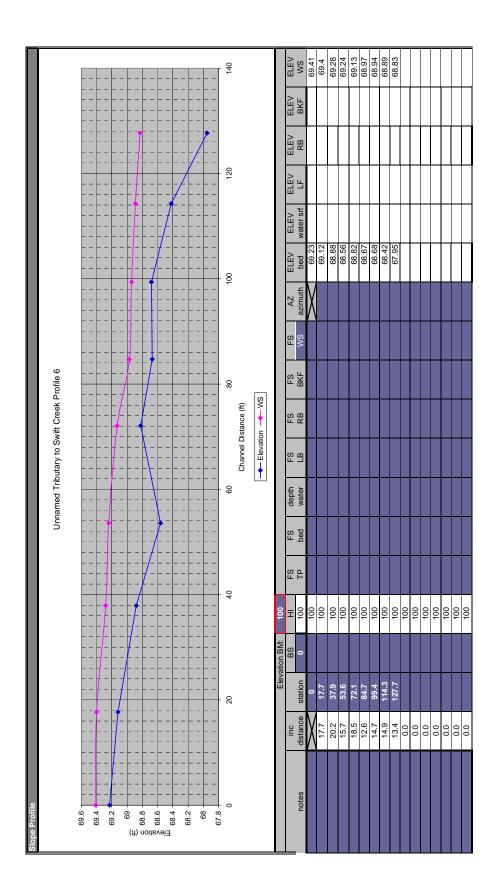
						1					1						
		ELEV	MS	75.22	75.01	74.78	74.72	74.68	74.56	74.33							
		ELEV	ЗКF														
			_	_					-					_			_
		ELEV	RB														
	²	ELEV	ц														
							_							_			
		ELEV	water srf	13	2	8	3	90	0.0	5							
		ELEV	bed	74.93	74.47	74.0	74.13	73.86	73.5	73.95							
	٩ • • • • • • • • • • • • • • • • • • •	AZ	azimuth	X													
			ſ	<u> </u>					+					_			
		FS	WS														
ofile 3	8	FS	BKF														
Unnamed Tributary to Swift Creek Profile 3	(j)	FS	ш						t								
Swift C	Channel Distance (ft)	ш. —	~														
utary to	Chame	FS	B														
ed Tribu	ـــــــــــــــــــــــــــــــــــــ	depth	/ater						T								
Unnam			-						┢								
		FS	pec														
		FS	ΤP														
		6 년 王	100	100	100	100	100	100	100	100	100	100	100	100	8	100	100
			£- 1		-	-	L I			-	-	1	-	-	-	-	1
		Elevation BM: BS	0														
	8	Elev	station	0 19.6	37.6	55.4	71.5	76.8	37.5 111.6	129.7							
	$ \begin{array}{c} - \end{array} \\ - \\ -$			٩	0	89	1				0	0	0	0	0	0	0
		inc	dista	19.6	18.0	17.8	16.1	5.3	14.3	18.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ile			notes														
Slope Profile	75.4 75.2 75.2 75.4 74.6 74.4 74.6 74.2 73.8 73.8 73.6 73.6 73.6																
Slo																	


|--|

		120	ELEV	WS 77.33	72.03	71.97	71.48	71.45	71.44	71.44 71.43	71.43	71.43				
			ELEV													
				-												
		100														
				vater srt	71.86	71.82	44 35	92	86	71.30	31	80				
				<u> </u>	71.	71.	7.7	.07	20.	102	71.31	70.80				
		80	AZ .	azimuth												
			FS	Ś												
rofile 4			FS	BKF												
Unnamed Tributary to Swift Creek Profile 4		ance (ft)	SE	RB										Ī		
ry to Swif		60 Channel Distance (ft)	S 1	E E												
d Tributa		ð 🛉	depth	ater												
Unname																
		40	FS													
			E E	<u>ב</u>												
			5 ±	100	<u>100</u>	100	001	100	100	00 10 10	100	100	100	00	100	100
			Elevation BM: BS	0												
		20	Eleve	station	12.2	26.2	41.2	53.0	67.2	81.4 87.9	95.4	108.2				
	 		inc	distance	12.2	14.0	0.CT 8 7	3.1	14.2	14.2 6.5	7.5	12.8	0.0	0.0	0.0	0.0
				5												
ie		0		notes												
slope Profile	()) noitevel3 ()) noitevel3 ()) noitevel3 () () () () () () () () () () () () ()															

Riffle Pebble Count				Riffle Pebble Count,	le Count,						
Material	Size Range (mm)	Count		Harrell-UT:	Harrell-UTSC-Pebble Count 4	int 4					
silt/clay	0 0.062	65	#	Tar Pamlico	0						
very fine sand		24	#								
fine sand	0.13 0.25	11	# Not	Note: XS 4							
medium sand	0.25 0.5		#								
coarse sand	0.5 1		#		Riffle Pebble	Riffle Pebble Count, Harrell-UTSC-Pebble Count 4	JTSC-Pebble	Count 4			
very coarse sand	1 2		#								
very fine gravel	2 4		# 100%								70
fine gravel			/000								
fine gravel	6 8		 00 00 54								60
medium gravel	8 11		# 80%								
medium gravel	11 16		100/								50 -
coarse gravel	16 22		900 UP								nun
coarse gravel	22 32		t f e0%								nbe
very coarse gravel			#						= =		er o
very coarse gravel									= =		f pa
small cobble			#								arti
medium cobble	90 128										cle
large cobble			#								20 s
very large cobble			# 20%								
small boulder	256 362										10
small boulder			10%								
medium boulder			#	 							0
large boulder	1024 2048		0.01	0.1	-	10	7	100	1000	10000	0
	article	100			particle size (mm)	um)		-∎ cumulative %	ative %	# of particles	es
			-		-				-		
bedrock			based on		size percen	s than	~		particle	particle size distribution	oution
clay hardpan			sediment	D16	D35	0	D84	D95	gradation	gradation geo mean	std dev
detritus/wood			particles only	0.062	0.06	0.1 0	0	0	1.4	0.1	1.3
artificial	-		based on	volo/+lio	percent by	trate		Joorbood	acabrod	100/000	loioitio
	total count:	100	total count	silvuay		5	ā	nearock	пагирап	MOUU/UEL	alulicial
				65%	35%	0% 0%0	%0	%0	%0	%0	0%

Material Size Range (mm) Count silt/clay Count 0.062 68 very fine sand fine sand medium sand 0.062 0.13 4 very fine sand very coarse sand very fine gravel fine gravel fine gravel 0.15 20 very coarse sand very fine gravel fine gravel 0.25 0.5 8 very soarse sand very fine gravel 1 2 4 very soarse sand very fine gravel 1 2 4 very soarse gravel 1 1 2 7 very coarse gravel 1 16 22 32 very coarse gravel 16 22 32 45 very coarse gravel 16 22 32 45 very coarse gravel 16 22 32 45 very coarse gravel 16 16 90 128 medium cobble 180 128 180 256 362 very large cobble 180 256 362 512 20 medium boulder 1024 2048		Percent finer than 90% 40% 40%	Note: XS 4	aach 4						number of partic
$\begin{array}{c ccccc} 0 & 0.062 \\ 0.062 & 0.13 \\ 0.13 & 0.25 \\ 0.5 & 0.5 \\ 0.5 & 1 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 1 \\ 1 & 6 \\ 8 & 11 \\ 1 & 6 \\ 8 & 11 \\ 11 & 16 \\ 11 & 16 \\ 12 & 32 \\ 32 & 45 \\ 45 & 64 \\ 64 & 90 \\ 128 & 180 \\ 128 & 180 \\ 128 & 180 \\ 128 & 180 \\ 128 & 180 \\ 128 & 180 \\ 128 & 180 \\ 128 & 180 \\ 128 & 180 \\ 128 & 180 \\ 128 & 180 \\ 1024 & 2048 \\ 1024 & 2048 \\ 2048 & 4096 \\ 2013 & 2013 \\ 2048 & 4096 \\ 0 \\ 1024 & 2048 \\ 1024 & 2048 \\ 0 \\ 2013 & 2013 \\ 2014 & 2048 \\ 1024 & 2048 \\ 2014 & 2048 \\ 2014 & 2048 \\ 2014 & 2048 \\ 2014 & 2048 \\ 2014 & 2048 \\ 2014 & 2048 \\ 2014 & 2048 \\ 2014 & 2048 \\ 2014 & 2048 \\ 2014 & 2048 \\ 2014 & 2048 \\ 2014 & 2048 \\ 2014 & 2048 \\ 2014 & 2048 \\ 2014 & 2014 \\ 2014 & 201$		100% - 90% - 70% - 50% - 40% -	XS 4							
0.062 0.13 0.05 0.13 0.25 0.5 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 2 1 2 2 4 6 8 8 11 16 2 11 16 22 22 22 32 45 45 45 64 90 128 90 128 180 128 180 256 362 362 362 512 1024 2048 1024 2048 4096 2048		100% - 90% - 70% - 60% - 40% -	X2 4			TSUE TO THE TOTAL CONTRACT OF	4			
0.13 0.25 0.25 0.5 0.5 0.5 1 2 1 2 2 4 6 8 11 16 11 16 12 22 32 45 32 45 16 22 17 16 180 128 180 128 180 256 256 362 362 512 512 1024 1024 2048 1024 2048		100% 90% + 70% - 50% + 40% -	X2 4			TSC-Reach	4			
0.25 0.5 1 0.5 1 2 1 2 4 2 2 4 6 8 1 11 16 1 6 8 11 16 22 32 45 32 45 64 90 90 128 90 128 180 128 180 256 362 364 363 364 363 362 362 362 362 362 362 362 362 364 363 364 363 364 363 362							4			
0.5 1 2 4 4 1 1 1 1 1 2 2 2 2 1 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2						Second Se	4			
1 2 4 6 8 8 8 8 11 11 22 22 90 90 90 128 128 128 126 212 2048 2048										
2 4 6 8 8 11 16 12 22 32 32 90 90 128 128 128 128 512 512 512 2048										
4 6 8 11 16 16 12 22 32 90 90 90 128 128 128 512 512 512 2048										
6 8 11 16 16 12 22 32 64 90 90 128 128 128 128 126 512 512 512 2048										
8 11 22 22 32 45 90 90 128 128 128 128 128 126 512 512 512 2048										
11 16 22 22 32 45 90 90 128 180 256 512 512 512 2048	<u>* * * * * * * * * * * * * * * * * * * </u>									
16 22 22 32 45 64 90 128 180 128 180 512 512 512 512 2048	* * * * * *						+			
22 32 45 45 64 90 90 128 180 256 512 512 1024 2048	****									
32 32 45 64 90 128 180 256 512 512 512 2048	# # #									
45 64 90 128 180 256 512 512 1024 2048	# #						·			
64 90 128 180 256 512 512 1024 2048	##									
90 128 180 256 362 512 1024 2048	Ī	-	-							
128 180 256 362 512 1024 2048	##	30%								
180 256 362 512 1024 2048	##									20
256 362 512 1024 2048	##	- %NZ								
362 512 1024 2048	##	10%							• 	10
512 1024 2048	##									
1024 2048	##			-			-	-	0	
2048	##	0.01	0.1	-	10	100	0	1000	10000	
	##				particle size (mm)	-				Г
total particle count: 100						†	-∎ cumulative %	ve %	# of particles	(0)
bedrock		based on	size	size percent less than (mm	than (mm)			particle	particle size distribution	ution
clay hardpan		sediment	D16 D35	5 D50	D65	D84	D95	gradation	geo mean	std dev
detritus/wood		particles only	0.062 0.06	0.1	0	0	0	2.0	0.1	1.7
artificial		based on	ber	percent by substrate type	trate type					
total count: 100		total count	silt/clay sand	nd gravel	cobble	boulder t	bedrock	hardpan	wood/det	artificial
			68% 32%	%0 %	%0	%0	%0	%0	%0	%0


	000 118 230 230 010 100 100 100 100 Image: Constrained of the image: Constra
River Basin:Tar-PamlicoWatershed:UTSCXS IDXS 5Drainage Area (sq mi):0.424Date:April 2006Field Crew:Hayes, Helms, Patterson	Station Elevation Station Elevation 0 71.65 Banchill Elevation:: 6.0 1 20 71.45 Banchill Elevation:: 6.1 20 71.12 Banchill Elevation:: 6.1 20 71.12 Banchill Elevation:: 6.1 20 71.13 Banchill Elevation:: 6.1 31 70.80 Max Depth at Banchill:: 2.2 31 70.80 Max Depth at Banchill:: 2.3 34.5 66.47 Banchill:: 2.3 35.5 66.65 W/D Ratio:: 1.1 37.8 67.86 Max Depth at Banchill:: 2.3 35.5 68.82 Max Depth at Banchill:: 1.9 37.8 67.86 Max Depth at Banchill:: 1.1 37.8 67.86 Max Depth at Banchill:: 1.1 37.8 67.86 M/D Ratio: 1.1 37.8 67.86 M/D Matio: 1.1 37.8 67.86 M/D Matio: <t< th=""></t<>

Riffle Pebble Count				Riffle Pebble Count,	ole Count,						
Material	Size Range (mm)	Count		Harrell-UT	Harrell-UTSC-Pebble Count 5	nt 5					
silt/clay	0 0.062	99	#	Tar Pamlico	0						
very fine sand	0.062	5	#								
fine sand	0.13 0.25	29	#	Note: XS 5							
medium sand	0.25 0.5		#								
coarse sand	0.5 1		#		Riffle Pebble	Riffle Pebble Count, Harrell-UTSC-Pebble Count 5	JTSC-Pebble	Count 5			
very coarse sand	1 2		#								
very fine gravel	2 4		100%								70
fine gravel	4 6		#								
fine gravel	6 8		0/ 02							-+	60
medium gravel			# 80%								
medium gravel	11 16		,								- 05
coarse gravel	16		90% 40%								nun
coarse gravel	22 32		#								nbe
very coarse gravel	32 45		#						= =		er o
very coarse gravel											fpa
small cobble	64 90		#								arti
medium cobble	06										cle
large cobble	128		#								20 s
very large cobble	180		# 20%								
small boulder	256 362		#								10
small boulder			#								
medium boulder			#								0
large boulder	1024 2048		# 40.01	0.1	~	10	10	100	1000	10000	0
	article	nt: 100			particle size (mm)	(mr		-∎ cumulative %	ative %	# of particles	es
						+ loce +hon /mm				conticlo cizo dictribution	
				č	Dor						
clay nardpan			searment	010	D35		D84	045	gradation	gradation geo mean	std dev
detritus/wood			particles only	0.062	0.06	0.1 0	D	D	1.9	0.1	1./
artificial			based on	vela/tlia	percent by	percent by substrate type	houlder	hadrock	acabred		Icioial
	IUIAI CUUIII.			0110 010						00/	
				00%	34%	U% U%	0%0	%N	0%	%N	0%0

Pebble Count, Harrell-UTSC-Reach 5 Pebble Count, Harrell-UTSC-Rea	Pebble Count of Channel Reach	el Reach					Pebble Count	ount,								
0 0.062 42 H Tar Pamilico 0.062 0.13 0.5 26 H Note:		ze Range	(mm)	Count	⊨ ⊨		Harrell-U ⁻	TSC-Reach	5							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	silt/clay	0	0.062	42	##		Tar Pamli	co								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.062	0.13	7	##											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	fine sand	0.13	0.25	25	##	NG	ote: XS 5									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	medium sand	0.25	0.5	26	##											
1 2 4 100%	coarse sand	0.5	Ţ		##			۳.	ebb <u>l</u> e C <u>o</u> ur		ITSC-Read	h 5	1	ļ	Ļ	
2 4 0% 1	very coarse sand	Ł	2		##	100%									45	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	very fine gravel	2	4		##	- %06						·			10	
6 8 11 80% 11 80% 11 80% 11	fine gravel	4	9		##	2									5	
8 11 ## 70% F <td>fine gravel</td> <td>9</td> <td>8</td> <td></td> <th>##</th> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>35</td>	fine gravel	9	8		##										35	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	medium gravel	8	11		##			1								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	medium gravel	11	16		##										nur က	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	coarse gravel	16	22		##										nbo	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	coarse gravel	22	32		##										or o 52	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	very coarse gravel	32	45		##			 								
64 90 ## 50% ## 50% ## 50% ## 50% ## 10%	very coarse gravel	45	64		##		-					-			oart	
90 128 1180 256 352 1180 256 362 1180 256 362 1180 256 362 1180 20% 1180 20% 1180 20% 1180 20% 1180 20% 1180 20% 1180 20% 1180 20% 1180 20% 1180 20% 1180 20% 100	small cobble	64	60		##										icle	
128 180 # 20% 10%	medium cobble	90	128		##	30%			_							
180 256 352 10% 40% 70% <th 70%<="" th="" th<=""><td>large cobble</td><td>128</td><td>180</td><td></td><th>##</th><th>ì</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td></th>	<td>large cobble</td> <td>128</td> <td>180</td> <td></td> <th>##</th> <th>ì</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10</td>	large cobble	128	180		##	ì									10
256 362 10% 1	very large cobble	180	256		##	ZU%										
362 512 1024 2048 ## 0% 10 10 100 100 2048 ## 0.01 0.1 1 1 10 100 100 2048 2048 4096 100 100 100 100 2048 2048 4096 100 100 100 2004 2048 2048 2048 2048 2048 2048 2048 2048 2048 2048 2048 2044 2055 2044 2055 2050 2055 2050 2055 2054 2055 2054 2055 2054 2055 2054 2055	small boulder	256	362		##	10%								- 4	5	
512 1024 2048 ## 0% 10 100 100 200 2048 4096 ## 0.01 0.1 1 1 10 100 100 2048 total particle count: 100 100 100 100 100 2048 4096 ## 0.01 0.01 100 100 2048 2048 2048 2050 <t< th=""><td>small boulder</td><td>362</td><td>512</td><td></td><th>##</th><th>2</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	small boulder	362	512		##	2										
1024 2048 ## 0.01 0.1 1 10 100 100 2048 4096 ## particle size (mm) particle size (mm)	medium boulder	512	1024		##	→ %0	-		-			-			0	
2048 4096 ## particle size (mm) total particle count: 100 =-cumulative total particle count: 100 =-cumulative sediment D16 D35 D50 D65 D84 D95 grad particles only 0.062 0.06 0.1 0 0 0 1 total count: 100 itlt/clay sand gravel cobble boulder bedrock hat		1024	2048		##	0.01	O	-	-	10		100	1000	10000	00	
total particle count: 100 based on size percent less than (mm) based on based on sediment D16 D35 D50 D65 D84 D95 gras particles only 0.062 0.06 0.1 0 0 0 0 0 1 total count: 100 total count silt/clay sand gravel cobble boulder bedrock hat		2048	4096		#				<u></u>	oarticle size	L				Γ	
Dased on size percent less than (mm) sediment D16 D35 D50 D65 D84 D95 gra sediment D16 D35 D50 D65 D84 D95 gra particles only 0.062 0.06 0.1 0 0 0 0 1 total count: 100 total count sit/clay sand gravel cobble boulder bedrock ha	t 0	otal particl	e count:	100								■– cumula		# of particles	es	
matrix Diff <	bedrock				<u></u>	based on		size perc	cent less t	han (mm)			particl	particle size distribution	ibution	
particles only 0.062 0.06 0.1 0 0 0 0 0 0 10 total count: 100 total count: 100 total count: sand gravel cobble boulder bedrock	clay hardpan					sediment	D16	D35	D50	D65	D84	D95	gradation	geo mean	std dev	
total count: 100 total count silt/clay sand gravel cobble boulder bedrock	detritus/wood					oarticles only	0.062	0.06	0.1	0	0	0	2.3	0.1	2.3	
100 total count sit/clay sand gravel cobble boulder bedrock	artificial					based on		percent	: by substr	ate type						
58% N% N% N%		tot	al count:	100		otal count	silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artificial	
							42%	58%	%0	%0	%0	%0	%0	%0	%0	

River Basin:	Tar-P	Tar-Pamlico		
Watershed:	UTSC	r .		
XS ID	Y SX			
Drainage Area (sq mi):	0.424			
Date:	April 2006	2006		
Field Crew:	Haye	Hayes, Helms, Patterson		Contraction of the local division of the loc
Station Elevation		SUMMARY DATA		
72		Bankfull Elevation:	69.8	
10 72.07		Bankfull Cross-Sectional Area:	11.9	
			7.9	
		Flood Prone Area Elevation:	72.5	
		Flood Prone Width:	>80 	
6		Max Denth at Bankfull:	2.7	
		Mean Denth at Bankfull:	1.5	
	<u> </u>	W / D Ratio:	5.2	
	E	Entrenchment Ratio:	10.1	
	E	Bank Height Ratio:	1.5	
7		Slone (ft/ft):	0.005	
		Discharda (ofe)	2000	Stream Tuner ES
	-	Abunat go (CIB)	ţ	Type.
2			Tar-Pa	Tar-Pamlico River Basin, UTSC, XS 6
70 71.26		- V2		
80 71.55		ţ		
		72	•	
		- ə <i>j)</i>		
		0 70		
		\əj=		
		68		
				A A A A A A A A A A A A A A A A A A A
			-	
		00 10 20	30	0 40 50 60 70 80
		2		
				Station (feet)

Bankfull Elood Prone Area	60 70
XS7	20
67.3 67.3 12.0 86 70.0 -55 >65 -70 >65 -71 2 1.4 1.4 0.00 1.6 0.005 1.6 0.005 1.6 1.4 1.6 0.005 1.6 1.4 1.6 1.4 1.6 1.4 1.6 1.4 1.6 1.4 1.6 1.4 1.6 1.4 1.6 1.4 1.6 1.4 1.6 1.4 1.6 1.4 1.6 1.4 1.6 1.4 1.6 1.4 1.7 1.4 1.6 1.4 1.7 1.4 1.8 1.4 1.9 1.4 1.1 1.4	30 40 Station (feet)
67.3 12.0 8.6 8.6 2.7 70.0 5.5 5.5 48 48 7.6 1.4 8.6 1.4 6.2 48 7.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1	20
son ATA Mion: Sectional Area: : ea Elevation: inth: Bankfull: Bankfull: fatio:	- 1
Tar-Pamlico UTSC XS 7 XS 7 XS 7 O.424 Aptril 2006 Hayes, Helms, Patterson Bankfull Elevation: Bankfull Cross-Sectional AI Bankfull Scional AI Bankfull Vidth: Flood Prone Width: Max Depth at Bankfull: W / D Ratio: Slope (ft/ft): Discharge (cfs) Discharge (cfs)	- 0
River Basin: Watershed: XS ID Drainage Area (sq mi): Date: Field Crew: Station Elevation 0 69.74 10 69.29 23 69.29 24 69.21 25 68.40 26 67.01 27 67.01 28 66.16 33 66.29 34 66.29 33 66.29 34 66.29 33 66.29 34 66.29 35 67.01 36 67.01 37 67.01 38 66.16 39 66.29 30 66.29 31 67.97 32 67.01 33 68.16 34 66.29 35 67.01 36 67.01 37 67.01 38 68.16 39 68.16	
River Basin: XS ID XS ID Drainage Arc Drainage Arc Date: Field Crew: Station 0 10 20 21 Station 0 10 20 21 22 23 33 34 35 33 34 35 36 37 38 37 38 37 38 37 38 37 38 39 36 37 38 39 31 42 55 63	

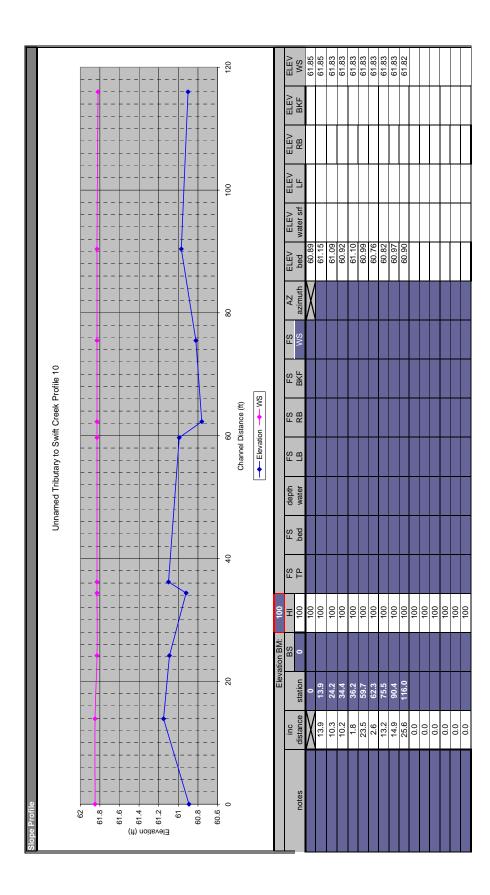
									1.1						
		180	EI EV	WS V	66.27 66	65.87 65.73	65.71	65.7 65.6	65.57	65.44					
				BKF											
			-												
		160	ū	RB											
			FIFV	, , , , ,											
		0	EI EV	water srf											
		140			65.62 65.44	64.85 64.32	65.40		64.75	.94					
			ū	bed	8 8	29 25	65	22	64	<u>8</u>					
		120	Δ7	azimuth	X										
		-	C.	S SN									Ī		
► = = = = = = = = = = = = = = = = = = =			-	-											
		<u>ک</u> 100	U.	- Ж											
		tance (ft)	S.	RB BB											
Unnamed Tributary to Swift Creek Profile 7		0 10 Channel Distance (ft)	C.	2 8	T										
Tributar		÷ ه	_									_	+		
			dent	water											
5			S.	peq											
		60	e.	2 년									T		
			-												
			5 1	100	0 0 0 0 0 0 0	100	100	00 00	100	001	100	100	100	000	100
		40	Elevation BM:	3 0											
			Elevati	station	0 18.4	21.0 54.4	65.3	67.2 113.2	132.9	156.3					
		0													
		20	inci	distance	18.4	2.6 33.4	10.9	1.9 46.0	19.7	23.4	0.0	0.0	0.0	0.0	0.0
α		0		notes											
66.5 66.5 66.5 66.5	(tt) noitsvel∃			C											
Slop															

Riffle Pebble Count				Riffle Pebble Count,	le Count,						
Material	Size Range (mm)	Count		Harrell-UT	Harrell-UTSC-Pebble Count 7	nt 7					
silt/clay	0 0.062		#	Tar Pamlico	0						
very fine sand	0.062 0.13		#								
fine sand	0.13 0.25		# No	Note: XS 7							
medium sand	0.25 0.5		#								
coarse sand	0.5 1	6	#		Riffle Pebble	Riffle Pebble Count, Harrell-UTSC-Pebble Count 7	JTSC-Pebble	Count 7			
very coarse sand	1 2	23	#								
very fine gravel	2 4	57	# 100%								60
fine gravel		9	/000								
fine gravel	6 8	2									C
medium gravel	8 11	7	#								ne
medium gravel	11 16	~	1								I
coarse gravel	16 22		up /0%								nun 9
coarse gravel	22 32		#								nbe
very coarse gravel	32 45										er o
very coarse gravel	45 64		# 1 10 00 00 00 00 00								
small cobble			# CGI								arti
medium cobble											cle 20
large cobble			4 30%								s
very large cobble			# 20%								
small boulder	256 362										10
small boulder			#								
medium boulder			#								0
large boulder	1024 2048		# 	0.1	-	10	1	100	1000	10000	0
very large bourder	2040 4030		+		narticla ciza (mm)	lmu			- 0/	the of non-tio	
	total particle count	100			hai incie size (il	(# or particles	es
bedrock			based on		size percen	size percent less than (mm			particle	particle size distribution	bution
clay hardpan			sediment	D16	D35	D50 D65	D84	D95	gradation	gradation geo mean	std dev
detritus/wood			particles only	1.235	2.07	2.5 3	4	9	1.8	2.2	1.7
artificial			based on		percent by	trate		-	-		
	total count:	100	total count	silt/clay		ō	ă	bedrock	nardpan	wood/det	artificial
				%0	32%	68% 0%	%0	%0	%0	%0	0%

						9	60		(09		nu	umt 2	ber	of Oc	par		es DZ		10	2		C	0		es	ution	std dev	1.7		artificial	
																							0	10000		# of particles	particle size distribution	geo mean	2.2		wood/det	
																								1000		ative %	particle	gradation	1.7		hardpan	
						:h 7										·							-	100				D95	7		bedrock	
						ITSC-Reac																		· ·	(mm)			D84	4		boulder	
						t, Harrell-L																	-	10	narticla ciza (mm)		an (mm)	D65	3	ate type	cobble	
	7					Pebble Count, Harrell-UTSC-Reach													<u> </u>		/	/		-	ć	ב	size percent less than (mm)	D50	2.4	percent by substrate type	gravel	
unt,	Harrell-UTSC-Reach	0				Å							·			· · · ·											size perc	D35	1.92	percent	sand	
Pebble Count	Harrell-UT	Tar Pamlico		Note: XS 7																				0.1				D16	1.320		silt/clay	
		##	##	## Note	##	##	##	##		##	ue		##		## 60 50%		###	##		## 20% -	1 100/2	##	##	## 0.01	###		based on	sediment	particles only	based on	total count	=
	Count	2 #	#	#	#	#	35 #				5	#		#	#	#	#	#	#	#	#	#	#	#	#	100					100	
	_	0.062	0.13	0.25	0.5	.	2	4	ų) a	1	16	22	32	45	64	06	128	180	256	362	512	1024	2048	4096						total count:	
nnel Reach	Size Range (mm)	0	0.062	0.13	0.25	0.5	-	2	4		- ∞	ľ	16	22	32	45	64	06	128	180	256	362	512	1024	2048	total particle count:					tota	
Pebble Count of Channel Reach	Material	silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium aravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	very large boulder		bedrock	clay hardpan	detritus/wood	artificial		

	64 000 11 33 100 11 33 73 13 300 100 100 11 33 100 100 11 33 100 11 33 100 11 30 100
River Basin:Tar-PamlicoWatershed:UTSCXS IDXS 8Drainage Area (sq mi):0.605Date:April 2006Field Crew:Hayes, Helms, Patterson	Station Elevation 0 67.69 0 67.39 0 67.39 20 67.73 21 66.74 22 66.74 23.55 66.06 24.8 66.41 25.5 66.00 26.6 64.36 27.3 $Bankfull Width:$ 28.8 64.36 29.6 64.38 29.6 64.38 29.6 64.38 20.6 64.36 23.6 64.36 31.4 65.40 32.4 65.66 67.140 31.4 65.66 67.140 32.4 65.66 67.20 33 67.26 34 66.89 67.140 35 67.140 36 67.26 37.3 66.30 66.36 67.126 <

			>		4	_ (2	8	_	4	2	<u>م</u>	ი			T	
	500		Ш	WS.	65.34 65.34	0.00	65.29 65.2	65.18	65.1	65.04	64.97 64.82	64.79	64.69				
			FI FV	BKF													
	180		FIFV	RB .													
			FI FV	, LF													
	160		FIFV														
			FI FV		62.22	04.13	64.35	64.94	64.33	64.39	64.53 64.45	64.74	63.71				
			A7 F	th	V												
					Λ					+							
	120		ES							_					_	_	
K Profile 8		(t)	S:	BKF													
Swift Creek Pr	 	Channel Distance (ft)	ŝ	RB													
butary to \$		Channel Eleva	S.	LB C													
Unnamed Tributary to Swift Creek Profile 8			denth	water													
5			ŝ	bed													
			ES	TP													
			6 포	100	100	100	100	100	100	100	100	100	100	100	100	100	100
			n BM: BS	0													
			Elevation BM: BS	station	0	03.3	83.4 93.9	106.7	6.0	129.1	143.7 157.4	9.2	175.9		+		
					. /									0			
	50 		inc	distance	Å	0.0	13.5	12.8	9.3	13.1	14.6	1.8	16.7	0.0	0.0	0.0	0.0
				Se													
ope Profile Elevation (ft) 3.3 % 55 55 3.3 % 55 55 5.5 % 55 55 % 55 55 5.5 % 55 55 % 55 55 5.5 % 55 % 5	62			notes													
0 0 0 0 0 (1) noitsvelE																	


												r	านท	he	er of	fn	arti	cle	s							on	std dev	1.0		artificial
								Γ 120		001			08				<u></u>	40	_	00	07		0	10000	ticles	stributi				
																								100	# of particles	particle size distribution	gec	0.1		wood/det
																								1000	ive %	particl	gradation	1.0		nardpan
						count 6			 																-∎ cumulative %		D95	0		bedrock
						C-Pebble C																		100	Ţ		D84	0		boulder
						Harrell-UTS										= =								10		n (mm)	D65	0	e type	cobble
	unt 6					Riffle Pebble Count, Harrell-UTSC-Pebble Count 6																			mm)	size percent less than (mm	D50	0.1	percent by substrate type	gravel
Count,	Harrell-UTSC-Pebble Count 6					Riffle Pebb																		~	particle size (mm)	size perce	D35	0.06	percent t	sand
Riffle Pebble Count,	Harrell-UTS(Tar Pamlico		(S 8											 									0.1	đ		D16	0.062	- 14 / - 1	silt/clay
-	-			Note: XS 8				_			·													10				y		
								100% _T	- %U0	0/02	80% -	7002	so ue	ر 1 1 1 60% -	ani 20%		rce 10% -		- %.nc	20% -	7001	- %01	1 %0	0.01		based on	sediment	particles onl	based on	total count
	Count	100 #	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	# 1	100 #					100
	(mm)	0.062	0.13	0.25	0.5	1	2	4	6	8	11	16	22	32	45	64	90	128	180	256	362	512	1024	2048	4030 Sie count:					total count:
	Size Range (mm)	0	0.062	0.13	0.25	0.5	1	2	4	6	8	11	16	22	32	45	64	06	128	180	256	362	512	1024	total particle count:					t
Riffle Pebble Count	_	silt/clay	very fine sand	fine sand	medium sand	coarse sand	very coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	very large poulder	bedrock	clay hardpan	detritus/wood	artificial	

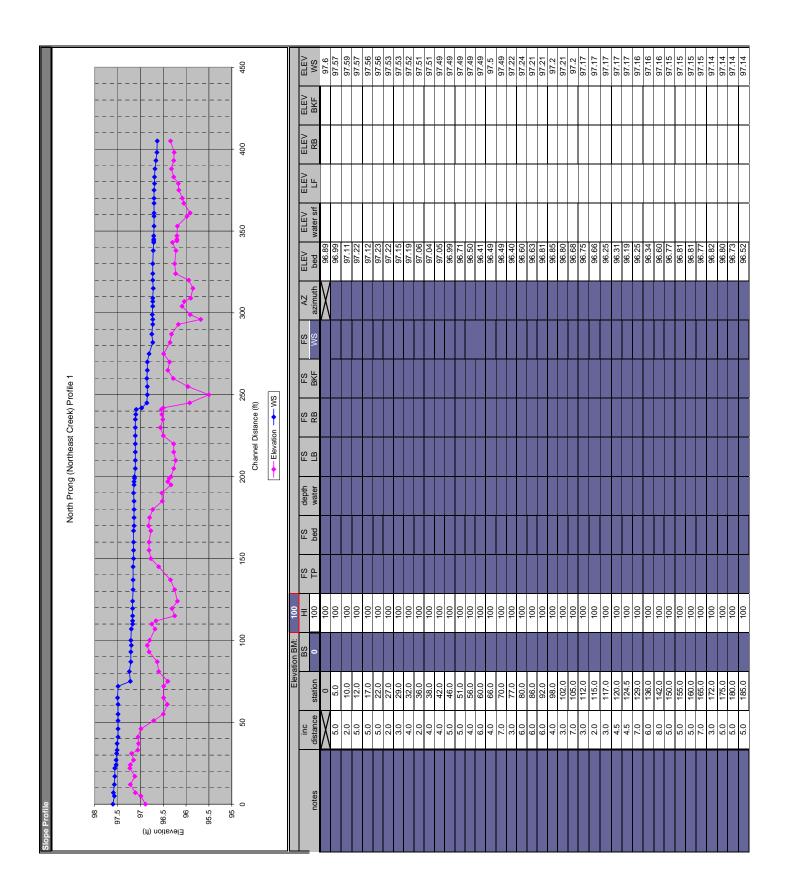
Pebble Count of Channel Reach	el Reach				Pe	Pebble Count	unt,							
Material	Size Range (mm)	(mm)	Count		На	Irrell-UTS	Harrell-UTSC-Reach 6	(0)						
silt/clay	0	0.062	100	##	Та	Tar Pamlico	0							
very fine sand 0	0.062	0.13		##										
fine sand	0.13	0.25		##	Note: XS 8	8								
medium sand	0.25	0.5		##										
coarse sand	0.5	1		##			Pe	Pebble Count,		Harrell-UTSC-Reach 6	h <u>6</u>	1	ļ	
very coarse sand	1	2		##										120
very fine gravel	5	4		%06 ##	·			·			·			
fine gravel	4	9		##										100
fine gravel	9	8		## 80%										2
medium gravel	8	11		ue ##										I
medium gravel	11	16												nur 8
coarse gravel	16	22		## 60%										nb
coarse gravel	22	32		# #								 		er o
very coarse gravel	32	45		## GU 50%										of p G
very coarse gravel	45	64		##	· - ·	-		-			_			bart
small cobble	64	06			 									ticle Ç
medium cobble	06	128		## 30%										
large cobble	128	180		##		= =								
very large cobble	180	256		%0Z ##				· _ ·						20
	256	362		## 10%										
small boulder	362	512		##	 	= =								
	512	1024		%0	0			-			_	-		0
	1024	2048			0.01	0.1		. 	10	~	100	1000	10000	0
very large boulder	2048	4096		##				ed	particle size (mm)	(mm				ſ
toi	total particle count:	e count:	100								-∎- cumu	- cumulative %	# of particles	cles
bedrock				based on			size perce	size percent less than (mm	ian (mm)			particle	particle size distribution	ibution
clay hardpan				sediment		D16	D35	D50	D65	D84	D95	gradation	geo mean	std dev
detritus/wood				particles only		0.062	0.06	0.1	0	0	0	1.0	0.1	1.0
artificial				based on			percent	percent by substrate type	ate type					
	tota	total count:	100	total count	. <u>N</u>	silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artificial
						100%	%0	%0	%0	%0	%0	%0	%0	0%

Elood Prone Area	60 80
66.3 12.1 10.4 10.4 85 2.7 27 2.7 27 1.2 27 1.2 32 3.2 Stream Type: E3	30 40 50 6 Station (feet)
Patterson Patterson RY DATA RY DATA Cross-Sectional Area: Width: me Area Elevation: me Width: me Width: me Area Elevation: me (cfs)	62 + 0 10 20
River Basin: T Watershed: N Watershed: N Xs ID x Drainage Area (sq mi): 0. Date: A Date: Elevation Station Elevation 0 68.50 10 67.39 20 66.69 30 66.59 30 66.59 30 66.59 31 63.55 41.4 65.54 42.7 64.09 45.3 63.55 46.5 63.55 46.5 63.55 46.5 63.55 46.5 63.55 46.5 63.57 46.5 63.57 46.5 65.27 46.5 65.27 70 66.69 70 66.69 70 66.69 75 66.57	

					64.2	64.18 64.19	64.2	64.2 64.1	64.07	63.92					
		- 8	BKF ELEV												_
			ELEV	2											
		- 02	ELEV	5											
			ELEV water srf	Watel SII											
			ELEV	63.68	63.74	63.62 63.40	63.46	63.42 63.50	63.70	63.59					
		60	AZ												
			FS	000											
Profile 9		20	FS BKF												
Unnamed Tributary to Swift Creek Profile 9	+ +	40 Channel Distance (ft)	FS												
utary to Sv		- 40 Channel E ● Elevati	FS	3											
amed Trib			depth	water											
C		- 00	FS	nen											
	<mark> </mark>		FS TD	-											
		- 2	100 HI	100	100	100	100	100	100	100	100	100	100	100	100
			Elevation BM: BS	-											
			Eleva	0	14.8	27.6 40.6	47.3	48.8 70 c	79.2	109.9					
		- 10	inc		14.8	12.8 13.0	6.7	1.5	0.6	30.7	0.0	0.0	0.0	0.0	0.0
								T							
ope Profile	64.3 64.2 64.1 64.1 63.3 63.3 63.3 63.3 63.3 63.3 63.3 63	- 0	notec	10162											
Slope	(ft) noitsvel∃														

iver Basin: /atershed: S ID rainage Ar ate: ield Crew: Station	 Tar-Pamlico UTSC XS 10 0.605 April 2006 Hayes, Helms, Patterson SUMMARY DATA	Patterson Y DATA						Cla
0 65.40 10 65.41 20 65.41 20 65.01 25 64.97 27.9 64.48 27.9 64.48 27.9 64.48 27.9 64.48 27.9 64.48 31 60.77 32.5 60.98 34.3 60.74 35.4 61.25 36.3 61.08 36.3 64.19 36.3 64.19 36.3 64.19 36.3 64.19 36.4 64.19 56 64.64 56 64.64	Bankfull Elevation: Bankfull Cross-Secti Bankfull Vidth: Flood Prone Area E Flood Prone Width: Max Depth at Bank W / D Ratio: Entrenchment Ratio: Slope (ft/ft): Discharge (cfs) 66 66 64 62 62 63 63 64 64 64 64 64 65 66 66 66 66 66 66 66 66 66 66 66 66	Bankfull Elevation: Bankfull Cross-Sectional Area: Bankfull Vidth: Flood Prone Area Elevation: Flood Prone Width: Max Depth at Bankfull: Mean Depth at Bankfull: MV/D Ratio: Entrenchment Ratio: Bank Height Ratio: Discharge (cfs) Elevation (feet) 66 67 68 68 69 60 64 60 64 64 60 64 64 65 66 66 66 66 66 66 66 66 66 66 66 66		63.8 18.4 8.4 66.8 560 3.0 2.2 3.8 7.1 1.2 0.00026 20 50 51 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.	63.8 18.4 66.8 -7.1 -1.2 -1.2 -1.2 -2.2		Bankfull Flood Prone Area	Area
	60	0	- 9	5	30 Station (feet)	- 04	20 -	8

Appendix F. Reference Reach Data


River Bacin-		Cana Haar						
Watershed:		North Prong (Northeast Creek)	ortheast Creek)					
XS ID		XS 1 Riffle				にいい、大学にあると	の大学であると言う	SALE.
Drainage Area (so mi):	ea (sa mi):	3.04			小八日本		日本があるという	
Date:		September 2002	2		12 19			e
Field Crew:					Sec. Prov			で見
						というという	「「「「「「「「「」」」」	
Station	Elevation	SUMMARY DATA	Y DATA		North Contraction of the second secon	「ころのない」のないで		No. of Concession, Name
0	99.89	Bankfull Elevation:	llevation:	99.7	もなどが大い	and the second second		
10	99.63	Bankfull C	Bankfull Cross-Sectional Area:	22.6			A State of the sta	
16	99.67	Bankfull Width:	Vidth:	13.6	いていたの	the case	いたいからいいい	No.
20	99.71	Flood Proi	Flood Prone Area Elevation:	102.3		A DESCRIPTION OF THE OWNER OF THE	ないたいであって	A REAL
77	99.91 00.04	Flood Prone Width: May Doubb of Doubd	Flood Prone Width: May Dough at Daulyfull.	0.075 2.6				三十二
26 26	99.94 00 00	Mean Dent	iviax Depui at Dankhun. Mean Denth at Bankfull	2.0		一日の一日の一日の		ALL ALL
28	99.87	W / D Ratio:	io:	8.2	いいあいい			5
30	99.78	Entrenchm	Entrenchment Ratio:	23.8	したたちの	「「「「「「」」		
32	99.70	Bank Height Ratio:	ht Ratio:	1.0	のないの	いたいとないの		-
33	99.53	Slope (ft/ft):	:(0.002	A DECEMBER OF	and and the second second	A STATE OF THE STA	5
34	99.07	Discharge (cfs)	(cfs)	70	Stream Type:	C5		
35	98.41							
36	97.98							
36.7	97.80		Cape Fear]	River Basi ı	a, North Prong	Cape Fear River Basin, North Prong (Northeast Creek), XS 1 Riffle	tiffle	
37.4	97.70							
37.7	97.54	103						
38.0	97.32	-						
38.8	97.16	102		•				
39.5	97.19 67.15						 Bankfull 	
40.1	97.15 07.20	() e	+				Flood Prone Area	
41.9	97.22	(tei					Ţ	
42.2	97.44				~			
42.9	97.53	<i>тел</i> 6						
43.2	97.74				~	-•		
43.8	97.78	- A0				8.		
44.4	98.16	07				and a second s		
44.9	99.04	18	+					
45.5	99.50	96		-	-	-	-	
45.8	99.94		- 0	c	- 0	- C	- C	
46.6	100.31		0		30	40 00	90 / 0	
48.0	100.53				Statior	Station (feet)		
50.0	100.45							
60.0	100.22							

Diver Basin:		Cone Boor												
Watershed:		North Prong (Northeast Creek)	it Creek)											
XS ID		XS 3 Pnol				X	小小人を見て		T. T.	al land	の日本の			_
Drainade Area (sd mi):	sa (en mi).	3 D/1		1		1	A Providence		A S.	A MAN	であって		1	
Date:	ca (ad mi).	5.04 November 2002		—					のなどの	No.	Sold Frank		Sel - Sel	
Field Crew:										and the second	のないの			
ł									A A	6				
Station	Elevation	SUMMARY DATA	TA				いたいない							
0	99.44	Bankfull Elevation:	on:		99.6		San Participation		and the second se	San wat		Set and		
5	99.49	Bankfull Cross-Sectional A	ectional Area:		30.9			「「「		Seller.	- AND			
10	99.59	Bankfull Width:			26.1				いたのである	and the second				
20	99.36	Flood Prone Area Elevation	a Elevation:			i.					the state			
21	99.31	Flood Prone Width:	lth:				1	1	1		the second	State of		
22	99.17	Max Depth at Bankfull:	mkfull:		3.7		1	Z			A State of the sta			
24	98.75	Mean Depth at Bankfull:	ankfull:		1.2	1	二人の		No. of the second se	Alt an	the second			
25	98.52	W / D Ratio:			21.8	. 9	-			-	in the			
26	98.07	Entrenchment Ratio:	atio:			C			and the lite	- A	and a c			
28	96.93	Bank Height Ratio:	io:		1.0		- mark	THE PARTY	-	144	The second		A STATE	
28.6	96.70	Slope (ft/ft):			0.000	2	A LAND		ALC: NO	1 2 1 W	the second second	and the second second	1 m	_
29.5	96.42	Discharge (cfs)				Stre	Stream Type:		C5					
30	96.25													[
30.7	96.03													
31.1	95.93			Cape Fe	ar River B	asin, Nor	th Prong (Northeas	Cape Fear River Basin, North Prong (Northeast Creek), XS 3 Pool	XS 3 Pool	_			
31.9	96.15													
32.9	96.39	102											[
33.3	96.70	70-										1.4.1		
34.8	98.15	101									•	Banktull		
35.7	99.16	2				<					:	Flood Prone Area	ea	
36.1	99.61) 100												
39.6	100.43			ł	- } - -									
40.5	100.56	μ) ι								Ì				
41.5	100.46	ioit tioit		•	-		>							
43.3	99.92	еле 20												
45.4	99.61	637 Ele												
C. / 4	99.30	· · · · ·			**									
50.0 74.0	98.59	96			>									
2.1.0	98.20													
52.2	98.24	95										-	T	
56.0	99.62		10	00	30		EO.	e0	02	UN OR	UD	100	110	
57.5	99.86	>	2	707	00	5	00	2		200	00	001		
62.0	99.74						Station (feet)	eet)						
70.0	99.07													
75.0	99.10]
85.0	99.03													
100.0	98.65													
105.0	99.61													

	Cape Fear River Basin, North Prong (Northeast Creek), XS 4 Riffle
Cape Fear North Prong (Northeast Creek) XS 4 Riffle XS 4 Riffle XS 4 Riffle September 2002 3.04 September 2002 Bankfull Elevation: 99 Bankfull Elevation: 99 Bankfull Elevation: 99 Bankfull Elevation: 90 Bankfull Elevation: 10 Rood Prone Area Elevation: 10 Flood Prone Width: 30 Mean Depth at Bankfull: 30 Model Prone Width: 30 Mean Depth at Bankfull: 30 Mutheight Ratio: 31 Bank Height Ratio: 31 Slope (ft/ft): 00 Mutheight Ratio: 00	
a (sq mi): Elevation 99.21 99.24 99.41 99.41 99.43 99.43 99.43 99.43 99.43 99.43 99.43 99.31 99.31 99.31 99.31 99.31	96.64 96.64 96.64 96.64 96.64 96.64 96.65 96.65 96.65 96.65 97.05 97.05 97.05 97.05 97.05 97.05 97.05 97.05 97.05 99.00 99.16 99.16 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 98.97 98.83 98.61 98.66 98.61 90.06
River Basin: Watershed: XS ID Drainage Area (sq mi): Drainage Area (sq mi): Date: Field Crew: Pation 99.410 0 99.241 10 99.410 11 99.410 12 20 99.431 13 99.431 99.431 14 99.431 99.431 20 99.431 99.431 21 99.431 20 99.431 23 23.7 98.58 23.7 98.30 24 97.82 26.37 26.37 26.37	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Reference Reach Data Bed Materials

	North Prong (Northeast Creek)			ve Riffle (XS-4)		Pehble Count North Prong (Northeast Creek)			32				5 dm											1 10 100 1000 1000	particle size (mm)	────────────────────────────────────	size nercent less than (mm)		UDU DOD D84 D30 gradation geomean sti	0.14 0.2 0.3 0.4 0.6 2.4 0.2 2.4	percent by substrate type	sand gravel cobble boulder bedrock hardpan wood/det artificial	89% 0% 0% 0% 0% 0% 0%
Pebble Count,	North Prong (N		Durham, NC	Note: Representative Riffle																				0.1			<u>ci</u> 2			0.075 0	ð	silt/clay s	11% 8
				Not			100%	/000	20 %	80%			190%	iî tr		06r 40%		30%	20%	0.02	10%	00		0.01			hased on	oduce of		particles only	based on	total count	
		11%	29%	58%	93%	%66	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%								
	Count	11	18	29	35	6	1																			100						100	
	e (mm)	0.062	0.13	0.25	0.5	-	2	4	9	8	11	16	22	32	45	64	06	128	180	256	362	512	1024	2048	4096	le count:						total count:	
inel Reach	Size Range (mm)	0	0.062	0.13	0.25	0.5	-	2	4	9	8	11	16	22	32	45	64	90	128	180	256	362	512	1024	2048	total particle count						toi	
Pebble Count of Channel Reach	Material	silt/clay	very fine sand	fine sand	medium sand	coarse sand	verv coarse sand	very fine gravel	fine gravel	fine gravel	medium gravel	medium gravel	coarse gravel	coarse gravel	very coarse gravel	very coarse gravel	small cobble	medium cobble	large cobble	very large cobble	small boulder	small boulder	medium boulder	large boulder	very large boulder		hadrock		ciay naropan	detritus/wood	artificial		

97.15	97.14	97.14	97.13	97.13	97.11	97.11	97.11	97.11	97.11	97.11	97.11	97.1	97.09	96.97	96.86	96.85	96.85	96.86	96.85	96.85	96.81	96.73	96.75	96.73	96.73	96.74	96.73	96.73	96.73	96.72	96.73	96.73	96.73	96.72	96.71	96.71	96.71	96.71	96.7	96.7	96.7	96.7	96.7	96.7	96.69	96.69	96.68	96.66	96.64	96.63	96.62
96.53	96.33	96.4	96.37	96.33	96.27	96.23	96.27	96.27	96.5	96.56	96.51	96.53	96.54	96.5	95.92	95.5	95.96	96.28	96.4	96.36	96.49	96.35	96.32	96.17	95.68	95.91	96.09	96.04	95.9	95.85	95.94	96.23	96.25	96.22	96.3	96.2	96.2	96.2	96.19	95.98	95.91	96.05	96.08	96.16	96.17	96.27	96.32	96.27	96.26	96.34	96.3
100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
190.0	195.0	200.0	2.0	4.0	205.0	0.0	5.0	220.0	225.0	230.0	235.0	240.0	243.0	6.0	247.0	250.0	5.0	0.0	5.0	270.0	5.0	280.0	287.0	2.0	298.0	1.0	304.0	0.0	312.0	4.0	0.0	325.0	9.0	5.0	3.0	8.0	0.0	350.0	2.0	8.0	364.0	6.0	2.0	375.0	0.0	384.0	388.0	3.0	398.0	3.0	410.0
5.0 190	5 195					5 210					5 235		3 240							5 270					3 296				2 312		5 32(6 329				1 349			6 358									5 396		0 410

Appendix G. Jurisdictional Wetlands

U.S. ARMY CORPS OF ENGINEERS WILMINGTON DISTRICT

Action ID. SAW-2006-40345-233 County: Edgecombe USGS Quad: Whitakers

GENERAL PERMIT (REGIONAL AND NATIONWIDE) VERIFICATION

Property Owner / Authorized Agent: KCI Technologies, Inc. attn: Steve Stokes

Address: Landmark Center II, Suite 220 4601 Six Forks Rd. Raleigh, NC 27609

Telephone No.: 919 783-9214 x 187

Size and location of property (water body, road name/number, town, etc.): <u>22.3 acres of agricultural land draining to</u> <u>Swift Creek, just east of the intersection of SR1415 (Morningstar Church) and SR 1414 (Benson Farm), six miles</u> northeast of Rocky Mount, NC.

Description of projects area and activity: <u>Fill approximately 0.24 acres (~3,485 linear feet by 3 foot wide) agricultural</u> drainage ditch bottoms to raise water table.

 Applicable Law:
 Section 404 (Clean Water Act, 33 USC 1344)

 Section 10 (Rivers and Harbors Act, 33 USC 403)

 Authorization:
 Regional General Permit Number:

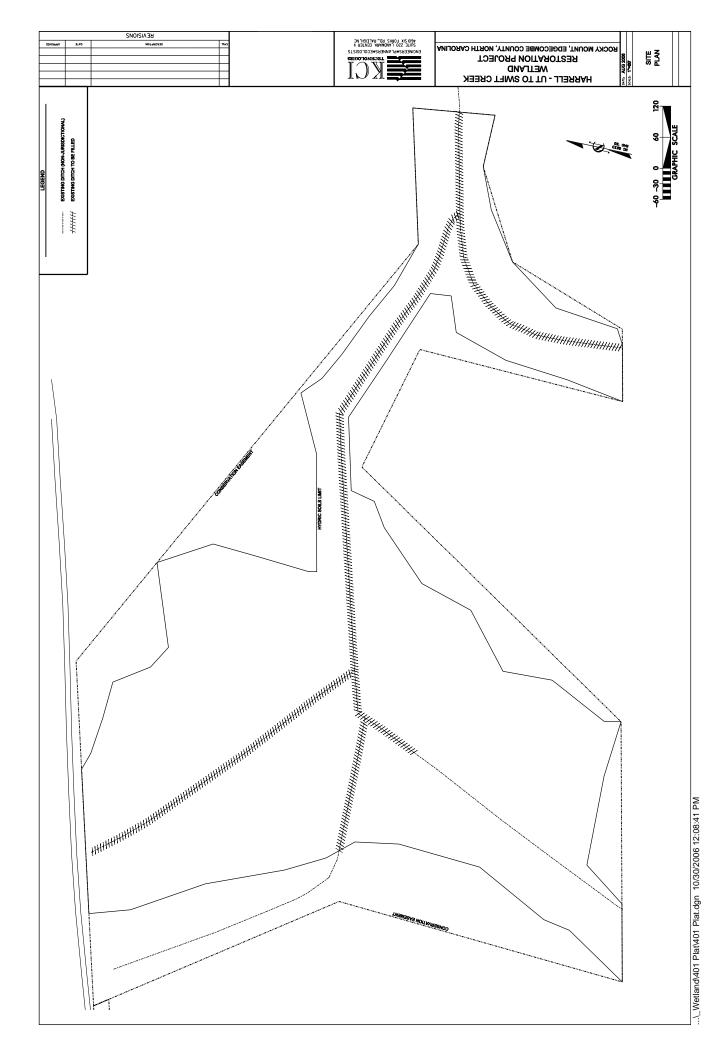
 Nationwide Permit Number:
 27

Your work is authorized by the above referenced permit provided it is accomplished in strict accordance with the attached conditions and your submitted plans. Any violation of the attached conditions or deviation from your submitted plans may subject the permittee to a stop work order, a restoration order and/or appropriate legal action.

This verification is valid until the NWP is modified, reissued, or revoked. All of the existing NWPs are scheduled to be modified, reissued, or revoked prior to March 18, 2007. It is incumbent upon you to remain informed of changes to the NWPs. We will issue a public notice when the NWPs are reissued. Furthermore, if you commence or are under contract to commence this activity before the date that the relevant nationwide permit is modified or revoked, you will have twelve (12) months from the date of the modification or revocation of the NWP to complete the activity under the present terms and conditions of this nationwide permit. If, prior to the expiration date identified below, the nationwide permit authorization is reissued and/or modified, this verification will remain valid until the expiration date identified below, provided it complies with all new and/or modified terms and conditions. The District Engineer may, at any time, exercise his discretionary authority to modify, suspend, or revoke a case specific activity's authorization under any NWP.

Activities subject to Section 404 (as indicated above) may also require an individual Section 401 Water Quality Certification. You should contact the NC Division of Water Quality (telephone (919) 733-1786) to determine Section 401 requirements.

For activities occurring within the twenty coastal counties subject to regulation under the Coastal Area Management Act (CAMA), prior to beginning work you must contact the N.C. Division of Coastal Management.

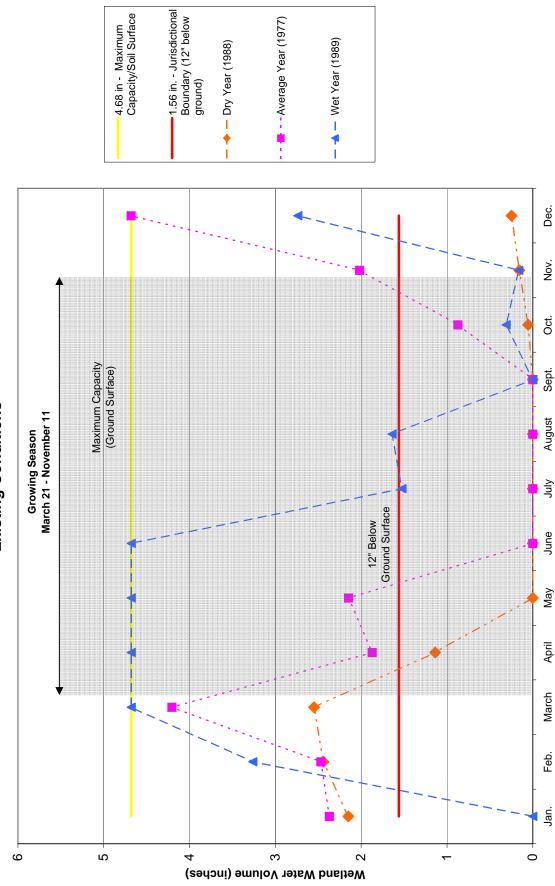

This Department of the Army verification does not relieve the permittee of the responsibility to obtain any other required Federal, State or local approvals/permits.

If there are any questions regarding this verification, any of the conditions of the Permit, or the Corps of Engineers regulatory program, please contact Jamie Shern at 919 876-8441 x 31.

Date: 8/16/06 Corps Regulatory Official 도명의 안동, CL

Expiration Date of Verification: March 18, 2007 and of creation of million

nuclines: modified on of the death but and

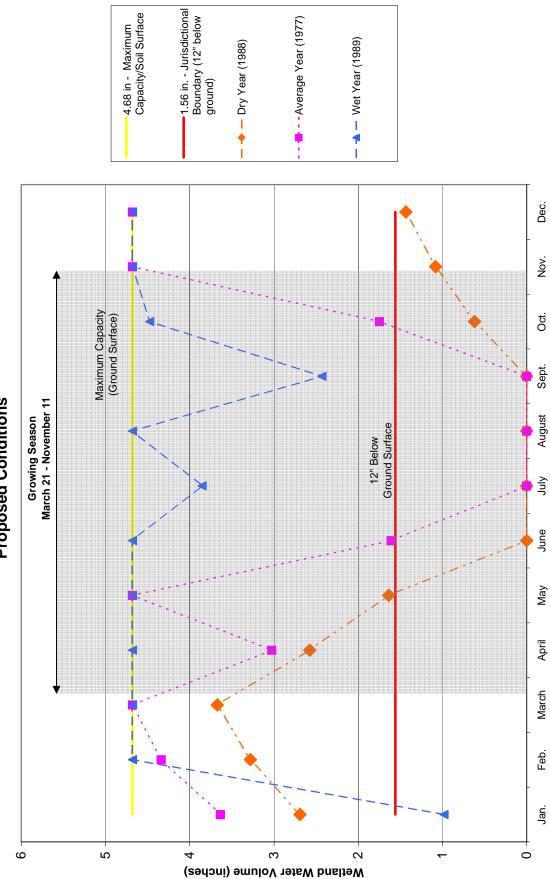

Appendix H. Wetland Water Budget

Harrell Farm - Existing Conditions

Dry Year	Water Inputs				W	ater Outpu	ts	Change in	Excess	Wetland
1988	Р	Si *	Gi	PET	So	Go	Loss to Ditches	Storage	Water	Volume
January	3.55	0.28	0.00	0.10	0.28	1.04	0.26	2.15	0.00	2.15
February	2.10	0.04	0.00	0.51	0.04	1.04	0.26	0.29	0.00	2.44
March	2.59	0.03	0.00	1.18	0.03	1.04	0.26	0.11	0.00	2.55
April	2.20	0.05	0.00	2.31	0.05	1.04	0.26	-1.41	0.00	1.14
May	3.64	0.31	0.00	3.84	0.31	1.04	0.26	-1.50	0.00	0.00
June	3.25	0.15	0.00	5.25	0.15	1.04	0.26	-3.30	0.00	0.00
July	2.24	0.07	0.00	6.44	0.07	1.04	0.26	-5.50	0.00	0.00
August	4.26	0.64	0.00	6.18	0.64	1.04	0.26	-3.22	0.00	0.00
September	2.40	0.04	0.00	3.97	0.04	1.04	0.26	-2.87	0.00	0.00
October	2.92	0.30	0.00	1.57	0.30	1.04	0.26	0.05	0.00	0.05
November	2.48	0.10	0.00	1.08	0.10	1.04	0.26	0.10	0.00	0.16
December	0.58	0.00	0.00	0.23	0.00	1.04	0.26	0.09	0.00	0.25
Annual Totals	32.21	2.00	0.00	32.66	2.00	0.00	3.12			

Avg. Year	Water Inputs				W	ater Outpu	ıts	Change in	Excess	Wetland
1977	Р	Si *	Gi	PET	So	Go	Loss to Ditches	Storage	Water	Volume
January	3.95	0.72	0.00	0.00	0.72	1.04	0.54	2.37	0.00	2.37
February	2.02	0.06	0.00	0.34	0.06	1.04	0.54	0.10	0.00	2.47
March	4.83	0.23	0.00	1.51	0.23	1.04	0.54	1.74	0.00	4.20
April	2.04	0.14	0.00	2.80	0.14	1.04	0.54	-2.34	0.00	1.87
Мау	5.94	2.70	0.00	4.08	2.70	1.04	0.54	0.28	0.00	2.15
June	2.89	0.04	0.00	4.96	0.04	1.04	0.54	-3.65	0.00	0.00
July	1.70	0.01	0.00	6.80	0.01	1.04	0.54	-6.68	0.00	0.00
August	5.39	0.82	0.00	5.96	0.82	1.04	0.54	-2.15	0.00	0.00
September	3.73	1.63	0.00	4.58	1.63	1.04	0.54	-2.43	0.00	0.00
October	4.43	0.34	0.00	1.98	0.34	1.04	0.54	0.87	0.00	0.87
November	4.06	1.28	0.00	1.33	1.28	1.04	0.54	1.15	0.00	2.02
December	4.06	0.29	0.00	0.38	0.29	1.04	0.54	3.14	0.00	4.68
Annual Totals	45.04	8.27	0.00	34.72	8.27	0.00	6.48			

Wet Year	V	Vater Input	s		W	ater Outpu	ts	Change in	Excess	Wetland
1989	Р	Si *	Gi	PET	So	Go	Loss to Ditches	Storage	Water	Volume
January	2.49	0.02	0.00	0.48	0.02	1.04	0.98	-0.01	0.00	0.00
February	5.70	0.52	0.00	0.42	0.52	1.04	0.98	3.26	0.00	3.26
March	6.25	0.48	0.00	1.08	0.48	1.04	0.98	3.15	1.01	4.68
April	7.74	1.18	0.00	2.11	1.18	1.04	0.98	3.61	2.89	4.68
May	5.72	0.49	0.00	3.47	0.49	1.04	0.98	0.23	0.00	4.68
June	8.36	1.17	0.00	6.16	1.17	1.04	0.98	0.18	0.00	4.68
July	5.16	1.35	0.00	6.29	1.35	1.04	0.98	-3.15	0.00	1.53
August	7.58	1.30	0.00	5.45	1.30	1.04	0.98	0.11	0.00	1.64
September	2.89	0.06	0.00	4.16	0.06	1.04	0.98	-3.29	0.00	0.00
October	4.47	0.75	0.00	2.14	0.75	1.04	0.98	0.31	0.00	0.31
November	2.90	0.19	0.00	1.03	0.19	1.04	0.98	-0.15	0.00	0.16
December	3.56	0.29	0.00	0.00	0.29	1.04	0.98	2.58	0.00	2.74
Annual Totals	62.82	7.79	0.00	32.80	7.79	0.00	11.76			


Water Budget Existing Conditions

Harrell Farm - Proposed Conditions

Dry Year	V	Vater Input	s		W	ater Outpu	ts	Change in	Excess	Wetland
1988	Р	Si *	Gi	PET So Go Loss to Ditches	Loss to Ditches	Storage	Water	Volume		
January	3.55	0.28	0.00	0.10	0.00	1.04	0.00	2.69	0.00	2.69
February	2.10	0.04	0.00	0.51	0.00	1.04	0.00	0.59	0.00	3.28
March	2.59	0.03	0.00	1.18	0.00	1.04	0.00	0.39	0.00	3.67
April	2.20	0.05	0.00	2.31	0.00	1.04	0.00	-1.10	0.00	2.58
Мау	3.64	0.31	0.00	3.84	0.00	1.04	0.00	-0.94	0.00	1.64
June	3.25	0.15	0.00	5.25	0.00	1.04	0.00	-2.89	0.00	0.00
July	2.24	0.07	0.00	6.44	0.00	1.04	0.00	-5.18	0.00	0.00
August	4.26	0.64	0.00	6.18	0.00	1.04	0.00	-2.32	0.00	0.00
September	2.40	0.04	0.00	3.97	0.00	1.04	0.00	-2.57	0.00	0.00
October	2.92	0.30	0.00	1.57	0.00	1.04	0.00	0.62	0.00	0.62
November	2.48	0.10	0.00	1.08	0.00	1.04	0.00	0.46	0.00	1.08
December	0.58	0.00	0.00	0.23	0.00	1.04	0.00	0.35	0.00	1.43
Annual Total	32.21	2.00	0.00	32.66	0.00	0.00	0.00			

Avg. Year	V	Vater Input	s		W	ater Outpu	ts	Change in	Excess	Wetland	
1977	Р	Si *	Gi	PET	So	Go	Loss to Ditches	Storage	Water	Volume	
January	3.95	0.72	0.00	0.00	0.00	1.04	0.00	3.63	0.00	3.63	
February	2.02	0.06	0.00	0.34	0.00	1.04	0.00	0.70	0.00	4.34	
March	4.83	0.23	0.00	1.51	0.00	1.04	0.00	2.51	0.00	4.68	
April	2.04	0.14	0.00	2.80	0.00	1.04	0.00	-1.65	0.00	3.03	
May	5.94	2.70	0.00	4.08	0.00	1.04	0.00	3.52	0.00	4.68	
June	2.89	0.04	0.00	4.96	0.00	1.04	0.00	-3.07	0.00	1.61	
July	1.70	0.01	0.00	6.80	0.00	1.04	0.00	-6.13	0.00	0.00	
August	5.39	0.82	0.00	5.96	0.00	1.04	0.00	-0.78	0.00	0.00	
September	3.73	1.63	0.00	4.58	0.00	1.04	0.00	-0.27	0.00	0.00	
October	4.43	0.34	0.00	1.98	0.00	1.04	0.00	1.75	0.00	1.75	
November	4.06	1.28	0.00	1.33	0.00	1.04	0.00	2.96	0.00	4.68	
December	4.06	0.29	0.00	0.38	0.00	1.04	0.00	3.98	0.86	4.68	
Annual Total	45.04	8.27	0.00	34.72	0.00	0.00	0.00				

Wet Year	V	Vater Input	s		W	ater Outpu	ts	Change in	Excess	Wetland Volume
1989	Р	Si *	Gi	PET	So	Go	Loss to Ditches	Storage	Water	
January	2.49	0.02	0.00	0.48	0.00	1.04	0.00	0.98	0.00	0.98
February	5.70	0.52	0.00	0.42	0.00	1.04	0.00	4.76	0.00	4.68
March	6.25	0.48	0.00	1.08	0.00	1.04	0.00	4.61	1.49	4.68
April	7.74	1.18	0.00	2.11	0.00	1.04	0.00	5.78	2.66	4.68
May	5.72	0.49	0.00	3.47	0.00	1.04	0.00	1.70	0.00	4.68
June	8.36	1.17	0.00	6.16	0.00	1.04	0.00	2.33	0.00	4.68
July	5.16	1.35	0.00	6.29	0.00	1.04	0.00	-0.83	0.00	3.85
August	7.58	1.30	0.00	5.45	0.00	1.04	0.00	2.39	0.00	4.68
September	2.89	0.06	0.00	4.16	0.00	1.04	0.00	-2.25	0.00	2.43
October	4.47	0.75	0.00	2.14	0.00	1.04	0.00	2.04	0.00	4.47
November	2.90	0.19	0.00	1.03	0.00	1.04	0.00	1.02	0.00	4.68
December	3.56	0.29	0.00	0.00	0.00	1.04	0.00	3.84	0.72	4.68
Annual Total	62.82	7.79	0.00	32.80	0.00	0.00	0.00			

Water Budget Proposed Conditions

ADDENDUM Harrell Stream and Wetland Restoration Plan May 1, 2007

On March 30, 2007, KCI Technologies, Inc. (KCI) submitted the Restoration Plan for the Harrell Stream and Wetland Restoration Site to the Ecosystem Enhancement Program (EEP). The plan proposes restoring 6,987 linear feet on an Unnamed Tributary to Swift Creek (UTSC) and 15.0 acres of a Coastal Plain Small Stream Swamp wetland community. This addendum addresses the comments generated from the EEP review of the Restoration Plan.

The EEP comments are described below followed by the response from KCI that provides the requested information/justification.

1.) EEP Comment

Page 6, Section 5.0 – Reference reaches for the project includes the Mitchell River in Surry County and the North Prong Creek in Durham County. While it is understood that reference reach data is used to develop dimensionless ratios, the distance and geographic location of the Mitchell River site in particular to the proposed site is significant. Please provide justification of why these sites were chosen over reference reaches closer to the project site and within the same geographic area.

KCI Response

KCI has spent considerable time searching for suitable reference reaches throughout North Carolina. Finding a reference reach for the Reach 1 proved to be especially hard because there are few stable Bc streams with the appropriate slope in the proximity of the restoration site. Even though the Mitchell River site is not close to the project site geographically, the desired stream type and valley is the same as the designed stream. Published data have concluded that geographical proximity is less important in reference reach selection than stream and valley character.¹

¹ Hey, R.D. 2006. Fluvial geomorphological methodology for natural stable channel design. Journal of the American Water Resources Association (JAWRA) 42(2): 357-374.

2.) EEP Comment

Page 8, Section 6.2.1 – Please reference the location of the documentation for the conclusions identified (assuming it relates to Appendix H).

KCI Response

The effect of ditching on wetland hydrology was evaluated using DRAINMOD, a groundwater model developed at North Carolina State University to simulate the effects of drainage networks on soils with shallow water tables. The model was subsequently modified with a counter goal of evaluating wetland hydrology. The model requires the following inputs: effective ditch/drain depth; ditch/drain spacing; soil-water characteristics; saturated hydraulic conductivities, and climatic data for the area consisting of daily rainfall, daily maximum and minimum temperatures, and growing season. Using information from the existing site conditions, the ditches in the model were set at 90 cm (3 ft) deep and spaced at 75 meters apart. The soil-water characteristic file was generated using the NRCS model Map Unit Users File (MUUF) for Roanoke soil. The MUUF was also used to set the saturated hydraulic conductivities. Daily rainfall and daily maximum and minimum temperatures for Rocky Mount and Tarboro for the period from 1950 to 2004 were used to generate the climatic dataset. The data were downloaded from the NOAA National Climatic Data Center website. Two datasets were obtained to allow for coverage in gaps in either set. Upon filling gaps, the Tarboro dataset covered the years from 1950 to 1997. The period modeled in the simulation was 1950 to 1990. The growing season for Edgecombe County is March 21 to November 11.

A model was created that simulated the existing conditions where ditch spacing is 75 meters apart and the ditch depth is 90 cm (HARR75.WET). Based on these existing conditions, the model indicates that wetland hydrology is not present on the site; the model showed that the site had jurisdictional hydrology only 18 out of 41 years. The impact from this ditching was calculated over the simulation period of 1950 to 1990 (HARR75B.YR in "drainage" column). Three years were chosen as representative: 1988, 1977, and 1989 as dry, average, and wet years, respectively.

Another model was created to analyze the conditions necessary to achieve jurisdictional hydrology. Multiple simulations were run using different spacing with a 10-meter interval, which indicated that at a spacing of 115 meters wetland hydrology (continuous saturation for 19 days or 8 percent of the growing season) was achieved 21 years of the time period (1950-1990). Further simulations for spacings from 110 to 115 meters at 1 meter intervals indicated that at a spacing of 114 meters or 57 meters on each side (187 feet) wetland hydrology was attained for 51 percent of the years modeled (HARRELL.WET).

A post-restoration simulation was conducted to predict the site groundwater hydrology after restoration activities have been completed. The existing ditch spacing was kept in the model, but the ditch depth was changed to 10 cm to indicate a minimal amount of drainage still exiting the site. The model indicated that successfully plugging and filling the ditches should restore jurisdictional wetland hydrology to the currently non-jurisdictional Roanoke soils with wetland hydrology 31 out of 41 years (HARRPST.WET).

To view the data from these analyses, please see the following pages (A-3 to A-9).

HARR75.WET

* DRAINMOD version 5.1 *
* Copyright 1980-99 North Carolina State University *

ANALYSIS OF WETLAND HYDROLOGIC CRITERIA for Roanoke soil at Edgecombe Co, N.C. for Ag field:75 m D/SPACING, STMAX=2.5cm, thwtd=30cm/12days, Ksat=8.8,.51,.05, 2

-----RUN STATISTICS ------ time: 10/ 5/2006 @ 17:30 input file: C:\DRAINMOD\inputs\HARR75.PRJ parameters: free drainage and yields not calculated drain spacing = 7500. cm drain depth = 90.0 cm

D R A I N M O D --- HYDROLOGY EVALUATION ****** INTERIM EXPERIMENTAL RELEASE ******

Number of periods with water table closer than 30.00 cm for at least 12 days. Counting starts on day 80 and ends on day 315 of each year

YEAR	Number of Periods of 12 days or more with WTD < 30.00 cm	Longest Consecutive Period in Days
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979	0. 0. 0. 0. 2. 1. 0. 1. 0. 1. 0. 2. 1. 0. 2. 1. 0. 2. 1. 0. 2. 1. 0. 2. 1. 0. 2. 1. 0. 2. 1. 0. 2. 1. 0. 2. 1. 0. 0. 2. 1. 1. 0. 0. 2. 1. 1. 0. 0. 2. 1. 1. 0. 0. 2. 1. 1. 0. 0. 2. 1. 1. 0. 0. 2. 1. 1. 0. 0. 2. 1. 1. 0. 0. 2. 1. 1. 0. 0. 2. 1. 1. 0. 2. 1. 1. 0. 2. 1. 1. 0. 2. 1. 1. 0. 2. 1. 1. 0. 1. 1. 0. 2. 1. 1. 0. 2. 1. 1. 0. 2. 1. 1. 0. 2. 1. 1. 0. 2. 1. 1. 0. 2. 1. 1. 0. 2. 1. 0. 2. 1. 0. 1. 0. 2. 1. 0. 2. 1. 0. 2. 1. 0. 2. 1. 0. 2. 1. 0. 2. 0. 1. 0. 2. 1. 0. 2. 1. 0. 2. 0. 1. 0. 2. 0. 1. 0. 2. 0. 1. 0. 2. 0. 1. 0. 2. 0. 1. 0. 2. 0. 1. 0. 2. 0. 1. 0. 2. 0. 1. 0. 2. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 0. 1. 0. 0. 2. 0. 1. 0. 1. 0. 1. 0. 2. 0. 1. 0. 1. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 1. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	$\begin{array}{c} 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 19.\\ 20.\\ 11.\\ 29.\\ 15.\\ 10.\\ 11.\\ 12.\\ 4.\\ 21.\\ 15.\\ 6.\\ 13.\\ 2.\\ 20.\\ 10.\\ 20.\\ 10.\\ 20.\\ 0.\\ 9.\\ 16.\\ 8.\\ 0.\\ 7.\\ 23.\\ 15. \end{array}$

A-3

	<u> </u>	
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990	HARR75.WE 0. 0. 1. 1. 1. 0. 1. 0. 3. 1.	ET 8. 0. 40. 25. 8. 0. 12. 0. 22. 15.

Number	of	Years	with	at	least	one	period =	18.	out of	41 years	•
--------	----	-------	------	----	-------	-----	----------	-----	--------	----------	---

HARR75B.YR

* D	AINMOD version 5.1	*
	99 North Carolina State University	*

ANALYSIS OF WETLAND HYDROLOGIC CRITERIA for Roanoke soil at Edgecombe Co, N.C. for Ag field:79 m D/SPACING, STMAX=2.5cm, thwtd=30cm/12days, Ksat=8.8,.51,.05, 2

RUN STATISTICS	time: 2/ 9/2005 @ 10:38
<pre>input file: C:\DRAINMOD\inputs\HARR75B. parameters: free drainage drain spacing = 7900. cm</pre>	PRJ and yields not calculated drain depth = 90.0 cm

YEAR 1950 1951 1952 1953 1954 1955 1956 1957 1958 1956 1960 1961 1962 1963 1964 1965 1966 1967 1968 1966 1967 1972 1977 1977 1977 1977 1977 1977 197	RAINFALL 100.89 91.41 121.41 103.84 104.01 129.39 129.82 131.22 139.55 135.84 143.41 111.33 127.28 95.83 138.79 107.37 121.41 121.03 102.39 138.89 110.41 137.16 108.84 117.16 108.84 117.10 114.83 88.21 127.79 114.45 115.93 113.89 84.25 111.84 81.81 159.56 100.03 117.10	INFILTRATION 100.89 91.41 121.41 103.84 94.20 106.41 121.91 117.46 117.62 124.02 109.07 103.95 119.33 88.66 107.57 97.62 112.13 103.86 98.51 124.59 108.83 116.72 106.20 112.17 120.48 113.03 86.51 104.59 108.31 101.45 122.89 111.09 88.07 120.53 99.23 109.03 110.59 84.25 95.22 81.81 131.90 100.79 6 107.16	N ET 95.49 86.29 89.42 89.09 88.26 89.05 99.45 94.71 88.05 96.78 91.15 85.56 93.94 73.54 84.46 92.32 87.62 85.56 88.17 92.08 92.07 94.94 94.23 95.09 104.38 95.09 104.38 95.29 91.81 82.22 93.64 90.80 79.82 97.83 77.11 100.28 87.81 81.57 80.13 77.43 93.14 92.27 89.47	DRAINAGE .00 .00 .47 7.59 14.85 21.33 20.58 29.57 27.24 21.85 18.10 21.98 14.90 23.11 19.54 12.11 16.46 13.58 29.26 18.79 24.90 10.45 13.94 16.48 18.37 9.72 16.50 20.40 30.50 18.16 10.65 20.01 22.12 22.60 11.27 4.87 16.06 7.85 29.79 16.43 16.40	RUNOFF .00 .00 9.82 22.97 7.90 11.66 22.02 13.46 34.71 7.38 7.95 6.19 30.49 11.46 9.28 4.76 13.21 2.68 20.44 2.64 5.30 15.33 28.21 3.75 11.98 6.71 6.30 15.33 28.21 3.75 16.63 15.29 7.46 3.30 16.62 2.00 10.00	.00 .00 .00 .00	TWLOSS .00 .48 17.48 37.86 29.32 32.33 51.62 40.75 56.63 25.51 30.00 21.13 53.62 31.06 21.48 32.78 18.47 42.52 21.55 45.38 13.14 19.33 17.56 30.47 16.48 22.92 35.82 58.77 22.02 10.84 26.72 37.43 30.16 14.64 4.93 32.74 7.89 56.74 16.54 26.47	PUMPV .00 .00 .00 .00 .00 .00 .00 .0
				Page 1				

HARRELL.WET

* DRAINMOD version 5.1 *
* Copyright 1980-99 North Carolina State University *

ANALYSIS OF WETLAND HYDROLOGIC CRITERIA for Roanoke soil at Edgecombe Co, N.C. for Ag field:87 m D/SPACING, STMAX=2.5cm, thwtd=30cm/12days, Ksat=8.8,.51,.05, 2

--------RUN STATISTICS ------- time: 2/9/2005 @ 14:7 input file: C:\DRAINMOD\inputs\HARRELL.PRJ parameters: free drainage and yields not calculated drain spacing = 11400. cm drain depth = 90.0 cm

D R A I N M O D --- HYDROLOGY EVALUATION ****** INTERIM EXPERIMENTAL RELEASE ******

Number of periods with water table closer than 30.00 cm for at least 19 days. Counting starts on day 80 and ends on day 315 of each year

YEAR	Number of Periods of 19 days or more with WTD < 30.00 cm	Longest Consecutive Period in Days
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979	0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 0. 2. 0. 0. 0. 2. 0. 0. 0. 2. 0. 0. 1. 1. 2. 0. 0. 1. 1. 2. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	$\begin{array}{c} 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 7.\\ 35.\\ 24.\\ 22.\\ 30.\\ 17.\\ 27.\\ 33.\\ 17.\\ 7.\\ 29.\\ 18.\\ 8.\\ 16.\\ 6.\\ 30.\\ 30.\\ 30.\\ 42.\\ 3.\\ 18.\\ 33.\\ 20.\\ 0.\\ 10.\\ 25.\\ 27. \end{array}$

Å

HARR	ELL.	WET	

	nAKKELL.WE	
1980	1.	21.
1981	0.	5.
1982	1.	19.
1983	1.	41.
1984	1.	41.
1985	0.	10.
1986	0.	0.
1987	1.	25.
1988	<u>0</u> .	4.
1989	2.	25.
1990	1.	23.

Number of Years with at least one period = 21. out of	⁼ 41 years.
---	------------------------

Page 2

HARRPST.WET

		•
* DRAINMO	DD version 5.1 *	r
* Copyright 1980-99 No	orth Carolina State University *	r

.

ANALYSIS OF WETLAND HYDROLOGIC CRITERIA for Roanoke soil at Edgecombe Co, N.C. for Ag field:75 m D/SPACING, STMAX=2.5cm, thwtd=30cm/12days, Ksat=8.8,.51,.05, 2

------RUN STATISTICS ------ time: 2/9/2005 @ 16:0 input file: C:\DRAINMOD\inputs\HARRPST.PRJ parameters: free drainage and yields not calculated drain spacing = 7500.cm drain depth = 10.0 cm

D R A I N M O D --- HYDROLOGY EVALUATION ****** INTERIM EXPERIMENTAL RELEASE ******

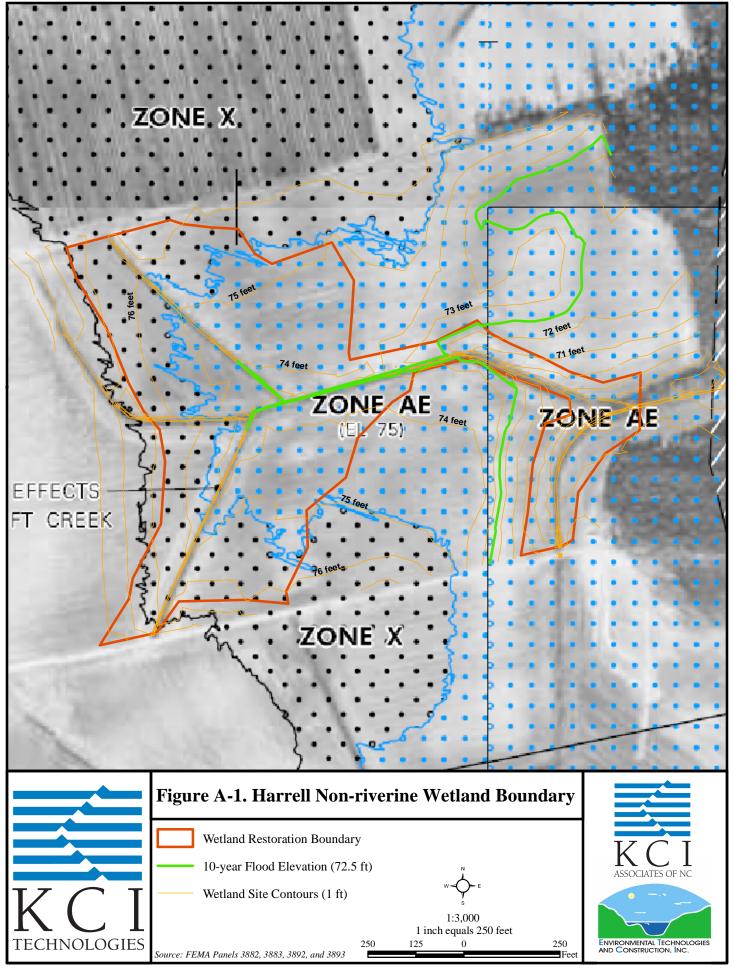
Number of periods with water table closer than 30.00 cm for at least 19 days. Counting starts on day 80 and ends on day 315 of each year

YEAR	Number of Periods of 19 days or more with WTD < 30.00 cm	Longest Consecutive Period in Days
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979	0. 0. 0. 1. 2. 2. 1. 3. 2. 1. 2. 0. 2. 2. 1. 1. 0. 2. 2. 1. 1. 3. 2. 2. 1. 3. 3. 1. 3. 3. 1. 3. 3. 1. 3. 3. 1. 3. 3. 1. 3. 3. 1. 3. 3. 1. 3. 3. 1. 3. 3. 1. 3. 3. 1. 3. 3. 1. 3. 3. 1. 3. 3. 1. 3. 3. 1. 3. 1. 3. 1. 3. 1. 3. 3. 1. 3. 1. 3. 1. 3.	$\begin{array}{c} 0.\\ 0.\\ 0.\\ 0.\\ 20.\\ 55.\\ 47.\\ 30.\\ 41.\\ 43.\\ 36.\\ 77.\\ 39.\\ 13.\\ 41.\\ 25.\\ 21.\\ 46.\\ 15.\\ 39.\\ 13.\\ 41.\\ 25.\\ 21.\\ 39.\\ 13.\\ 41.\\ 25.\\ 21.\\ 39.\\ 34.\\ 42.\\ 32.\\ 39.\\ 34.\\ 42.\\ 32.\\ 39.\\ 37.\\ 0.\\ 15.\\ 29.\\ 68.\\ \end{array}$

	HARRPST.WE	г
1980	1.	34.
1981	1.	24.
1982	2.	28.
1983	ī.	52.
1984	3.	62.
1985	1.	37.
1986	0.	2.
1987	1.	55.
1988	0.	15.
1989	4.	72.
1990	2.	29.

Number of Years with at least one period	d = 31.out of 41	years.
--	------------------	--------

Page 2


3.) EEP Comment

Page 8, Section 6.2.2 – Please provide a graphic to document the conclusions within these sections.

KCI Response

An initial boundary between non-riparian and riparian wetlands was set at 74 feet based on interpolation of available FEMA maps at the time of the project proposal. The definition of non-riparian wetland was based on that provided in RFP 16-D05025. In the most recent DFIRM maps from the Flood Insurance Study (FIS) for Edgecombe County (11/3/2004), FEMA provides elevations of 72.5 and 75.4 feet for 10-year and 100-year flood events, respectively. A boundary of 72.5 feet for a 10-year event shows that only a small portion of the site receives flooding input from Swift Creek during an event of this magnitude (Figure A-1).

Additional hydrologic analysis on the site has concluded that the site hydrology is derived from precipitation and groundwater, which is currently drained from the site by a series of drainage ditches. The site topography, in particular the surface slope at the eastern transition into the floodway of Swift Creek, allows any floodwaters to readily drain from the site and thus inhibits extended periods of floodwater retention in the restoration area.

A-11

4.) EEP Comment

Page 11-12, Sections 8.1.1 and 8.2 – The discussion in Section 8.1.1 and 8.2 indicates that the existing and the proposed stream system base sediment transport on the ability to move sand and finer material. Please address the effect, if any, the addition of pea gravel into the system will have on the streams ability to move bed load.

KCI Response

The gravel layer on the bed will serve as a stable substrate for the mechanism of the dune/anti-dune formation on top of the gravel. It will also help protect the streambed from extreme flow conditions where all of the sand becomes suspended in the flow. The gravel will not have any type of negative impact on the stream transport capacity.

5.) EEP Comment

Page 11, Section 8.1.1 – Please provide clarification and explanation of why a B5c channel was selected within Reach 1.

KCI Response

Without a well-defined floodplain/terrace adjacent to the channel, a Priority III restoration of a B5c channel is the most appropriate design in this landscape setting. A meandering channel with a large belt width could not be restored without excessive manipulation (changing the valley to a floodplain) to accommodate this form.

6.) EEP Comment

The Restoration Plan states that the Hydrologic Success Criteria will be saturated soil conditions within 12 inches of the ground surface (continuously) for 5% of the growing season. This is the MINIMUM duration to be considered wetland by USACE, but does not necessarily demonstrate the site hydrology has been restored. The Hydrologic Success Criteria should be based on the soil type and the proposed wetland type (Coastal Plain Small Stream Swamp), not the minimum needed to be considered wetland by USACE. Please revise your Restoration Plan to address this issue.

KCI Response

The Hydrologic Success Criterion for the site is saturated soil conditions within 12 inches of the ground surface (continuously) for 5% of the growing season. This is the criterion because this is the duration required by USACE. There is a lack of published data on hydrologic requirements for wetlands by community type. In the Third Approximation of the Classification of the Natural Communities of North Carolina (1990), Schafale and Weakley describe the hydrology of Coastal Plan Small Stream Swamp as "intermittently, temporarily, or seasonally flooded." This description does not convert to a quantifiable percentage of the growing season experiencing saturated soil conditions. The description of the soils at the site, Roanoke loam series, is also vague on percentage of the growing season experiencing soil saturation. The soil description describes the apparent high water table at a depth of 0-1.0 feet from the surface with the highest water table levels from November through May. Each annual monitoring report will discuss the site conditions, especially the site hydrology, and evaluate whether or not the site's objectives are being met. This will provide a better assessment of how the site is progressing toward the desired community type. Creating a quantifiable Hydrologic Success Criterion that is not based on documented scientific evidence would not be plausible given the limited evaluation period.